如圖(1)和圖(2)是某公司近三年的資金投放總額與利潤統(tǒng)計(jì)示意圖,根據(jù)信息判斷:(利潤率等于利潤除以資金投放總額)
(1)2012年的利潤率比2011年的利潤率高2%;
(2)2013年的利潤率比2012年的利潤率高8%;
(3)這三年的利潤率約為14%;
(4)這三年中2013年的利潤率最高.其中正確的結(jié)論共有
作業(yè)寶


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
C
分析:(1)分別求出2012年與2011年的利潤率,即可作出判斷;
(2)求出2013年的利潤率,即可做出判斷;
(3)求出三年的利潤率,即可做出判斷;
(4)比較即可得到結(jié)果.
解答:(1)2012年的利潤率為×100=12%,2011年的利潤率為×100%=10%,
則2012年的利潤率比2011年的利潤率高2%,正確;
(2)2013年的利潤率為×100%≈16.67%,比2012年的利潤率高4.67%,錯(cuò)誤;
(3)這三年的利潤率約為×100%≈14%,正確;
(4)這三年中2013年的利潤率最高,正確,
故選C.
點(diǎn)評(píng):此題考查了折線統(tǒng)計(jì)圖,條形統(tǒng)計(jì)圖,弄清題意是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AE=EB,AF=FC,有一同學(xué)發(fā)現(xiàn)EF與BC存在以下關(guān)系:EF∥BC,且EF=
12
BC.
(1)請你用學(xué)過的知識(shí)來說明上述關(guān)系成立的理由.
(2)如圖:在(1)的結(jié)論下,過BC、EF作直線,過A作BC的平行線.將AC向左平移到DC,得到圖②,將AC向右平移到DC,得到圖③.在圖②和圖③中猜想線段EF與線段AD、BC的關(guān)系,請把你猜想的結(jié)論填在圖下的方框內(nèi),并說明理由.
精英家教網(wǎng)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

37、貴陽市是我國西部的一個(gè)多民族城市,總?cè)丝跒?70萬人,如圖(甲)和圖(乙)所示的是2000年該市各民族人口的統(tǒng)計(jì)圖,2002年參加中考的人數(shù)為40 000人,請你根據(jù)圖甲和圖乙提供的信息回答下列問題:
(1)2000年貴陽市少數(shù)民族總?cè)丝谑嵌嗌偃耍?br />(2)2000年貴陽市苗族占總?cè)丝诘陌俜直仁嵌嗌伲?br />(3)2002年貴陽市參加中考的少數(shù)民族學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用同樣圖案的正方形地磚(圖1),可以鋪成如圖2的正方形和正八邊形鑲嵌效果的地面圖案(地磚與地磚拼接線忽略不計(jì)).已知正方形地磚的邊長為a,效果圖中的正八邊形的邊長為20cm.
精英家教網(wǎng)
(1)求a的值;
(2)我們還可以在正方形地磚上畫出與圖1不同的圖案,使它能拼出符合條件的圖2鑲嵌效果圖,請你按這個(gè)要求,在圖3中畫出2種與圖1不同的地磚圖案,并且所畫的圖形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市張家港市中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,AC=12厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒是k厘米;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求k的值和y2與x的函數(shù)關(guān)系;
(3)在圖2中,設(shè)y1與y2的圖象的交點(diǎn)為M,點(diǎn)G是x軸正半軸上一點(diǎn)(0<OG<6),過G作EF垂直于x軸,分別與y1、y2的圖象交于點(diǎn)E、F.求△OMF面積的最大值.
①說出線段EF的長在圖1中所表示的實(shí)際意義;
②求△OMF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆廣東汕頭新溪一中初三第一學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

一位同學(xué)拿了兩塊三角尺,做了一個(gè)探究活動(dòng):將 的直角頂點(diǎn)放在的斜邊的中點(diǎn)處,設(shè)

(1)如圖(1),兩三角尺的重疊部分為,則重疊部分的面積為        ,周長為       

(2)將圖(1)中的繞頂點(diǎn)逆時(shí)針旋轉(zhuǎn),得到圖26(2),此時(shí)重疊部分的面積為            ,周長為           

(3)如果將旋轉(zhuǎn)到不同于圖(1)和圖(2)的圖形,如圖(3),請你猜想此時(shí)重疊部分的面積為          

(4)在圖(3)情況下,若,求出重疊部分圖形的周長.

 

查看答案和解析>>

同步練習(xí)冊答案