【題目】定義:有兩個相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.
(1)如圖1,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點.求證:四邊形ABEF是鄰余四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點上,請畫出一個符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點上.
(3)如圖3,在(1)的條件下,取EF中點M,連結(jié)DM并延長交AB于點Q,延長EF交AC于點N.若N為AC的中點,DE=2BE,QB=6,求鄰余線AB的長.
【答案】(1)見解析;(2)見解析;(3)20.
【解析】
(1)AB=AC,AD是△ABC的角平分線,又AD⊥BC,則∠ADB=90°,則∠FAB與∠EBA互余,即可求解;
(2)如圖所示(答案不唯一),四邊形ABEF即為所求;
(3)證明△DBQ∽△ECN,即可求解.
(1)∵AB=AC,AD是△ABC的角平分線,
∴AD⊥BC,∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∴∠FAB與∠EBA互余,
∴四邊形ABEF是鄰余四邊形;
(2)如圖所示(答案不唯一),
四邊形ABEF即為所求;
(3)∵AB=AC,AD是△ABC的角平分線,
∴BD=CD,
∵DE=2BE,
∴BD=CD=3BE,
∴CE=CD+DE=5BE,
∵∠EDF=90°,M為EF中點,
∴DM=ME.
∴∠MDE=∠MED,
∵AB=AC,
∴∠B=∠C,
∴△DBQ∽△ECN,∴,
∵QB=6,
∴NC=10,
∵AN=CN,
∴AC=2CN=20,
∴AB=AC=20.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有一批復(fù)印任務(wù),原來由甲復(fù)印店承接,按每100頁40元計費.現(xiàn)乙復(fù)印店表示:若學(xué)校先按月付給一定數(shù)額的承包費,則可按每100頁15元收費.兩復(fù)印店每月收費情況如圖所示.
(1)乙復(fù)印店的每月承包費是多少元?
(2)當每月復(fù)印多少頁時兩復(fù)印店實際收費相同,費用是多少元?
(3)求甲、乙復(fù)印店的函數(shù)表達式.
(4)如果每月復(fù)印頁數(shù)在1200頁左右,那么應(yīng)選擇哪家復(fù)印店更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明想測量電線桿AB的高度,但在太陽光下,電線桿的影子恰好落在地面和土地的坡面上,量得坡面上的影長CD=4m,地面上的影長BC=10m,土坡坡面與地面成30°的角,此時測得1m長的木桿的影長為2m,求電線桿的高度.(結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于2020年新型冠狀病毒的襲擊,不得不推遲開學(xué),但停課不停學(xué),各地都開展了網(wǎng)課.某中學(xué)為了解學(xué)生上網(wǎng)課情況,開學(xué)后從全校七年級學(xué)生中隨機抽取部分學(xué)生進行了數(shù)學(xué)科目的測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:合格;D級:不合格),并將測試記錄繪成如下兩幅完全不同的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生數(shù)是多少?
(2)求圖1中A級扇形的圓心角∠α的度數(shù),并把圖2中的條形統(tǒng)計圖補充完成;
(3)該中學(xué)七年級共有1200名學(xué)生,如果全部參加這次數(shù)學(xué)科目測試,請估計不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動點P從A點出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以頂點A、B為圓心,大于AB為半徑作弧,兩弧在直線AB兩側(cè)分別交于M、N兩點,過M、N作直線MN,與AB交于點O,以O為圓心,OA為半徑作圓,⊙O恰好經(jīng)過點C.下列結(jié)論中,錯誤的是( )
A.AB是⊙O的直徑B.∠ACB=90°
C.△ABC是⊙O內(nèi)接三角形D.O是△ABC的內(nèi)心
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB中點,AE∥CD,CE∥AB.
(1)試判斷四邊形ADCE的形狀,并證明你的結(jié)論.
(2)連接BE,若∠BAC=30°,CE=1,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司經(jīng)過市場調(diào)查,發(fā)現(xiàn)某種運動服的銷量與售價是一次函數(shù)關(guān)系,具體信息如下表:
售價(元/件) | 200 | 210 | 220 | 230 | … |
月銷量(件) | 200 | 180 | 160 | 140 | … |
已知該運動服的進價為每件150元.
(1)售價為元,月銷量為件;
①求關(guān)于的函數(shù)關(guān)系式;
②若銷售該運動服的月利潤為元,求關(guān)于的函數(shù)關(guān)系式,并求月利潤最大時的售價;
(2)由于運動服進價降低了元,商家決定回饋顧客,打折銷售,這時月銷量與調(diào)整后的售價仍滿足(1)中函數(shù)關(guān)系式.結(jié)果發(fā)現(xiàn),此時月利潤最大時的售價比調(diào)整前月利潤最大時的售價低15元,則的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1的坐標為(1,2),以點O為圓心,以OA1長為半徑畫弧,交直線于點B1.過B1點作B1A2∥y軸,交直線y=2x于點A2,以O為圓心,以OA2長為半徑畫弧,交直線于點B2;過點B2作B2A3∥y軸,交直線y=2x于點A3,以點O為圓心,以OA3長為半徑畫弧,交直線于點B3;過B3點作B3A4∥y軸,交直線y=2x于點A4,以點O為圓心,以OA4長為半徑畫弧,交直線于點B4,…按照如此規(guī)律進行下去,點B2020的坐標為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com