草莓是對(duì)薔薇科草莓屬植物的通稱,屬多年生草本植物,草莓的外觀呈心形,鮮美紅嫩,果肉多汁,含有特殊的濃郁水果芳香,草莓營(yíng)養(yǎng)價(jià)值高,含豐富維生素C,有幫助消化的功效,與此同時(shí),草莓還可以鞏固齒齦,清新口氣,潤(rùn)澤喉部.我市某草莓種植基地去年第x個(gè)月種植草莓的畝數(shù)y(畝),與x(1≤x≤12,且x為整數(shù))之間的函數(shù)關(guān)系如表:
月份x123456789101112
13種植某數(shù)y6810121416161616161616
每畝收益z(元)與月份x(月)(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢(shì):
(1)請(qǐng)觀察題中的表格,用所學(xué)過(guò)的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),直接寫出y與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢(shì),直接寫出z與x之間滿足的函數(shù)關(guān)系式;
(2)該草莓種植基地在去年哪個(gè)月的總收益最大,求出這個(gè)最大收益;
(3)今年1月份,該草莓種植基地加大規(guī)模,種植草莓比去年12月份多4畝,每畝收益比去年12月份多a%,今年2月份,該草莓種植基地繼續(xù)加大規(guī)模,種植草莓比今年1月份多2a%,每畝收益比今年1月份多6元,若今年2月份該草莓種植基地總收益為672元,請(qǐng)你參考以下數(shù)據(jù),通過(guò)計(jì)算估算出a的整數(shù)值.(參考數(shù)據(jù):
63
=7.94,
65
=8.06,
66
=8.12)
(1)當(dāng)1≤x≤6,y=2x+4,
當(dāng)6≤x≤12,y=16;
當(dāng)1≤x≤6,z=-
9
2
x+
75
2
,
當(dāng)6≤x≤12,z=
9
4
x-3;

(2)設(shè)每月的總收益為W元,
當(dāng)1≤x≤6時(shí),
W=(2x+4)(-
9
2
x+
75
2
)=-9(x-
19
6
2+
961
4
;
即當(dāng)3月份時(shí)收益最大,這個(gè)最大收益是240元;
當(dāng)6≤x≤12時(shí),
W=16×(
9
4
x-3)=36x-48,
當(dāng)x=12時(shí),y取得最大值為384;
即當(dāng)12月份時(shí)收益最大,這個(gè)最大收益是384元;
綜上所知12月份時(shí)收益最大,這個(gè)最大收益是384元;

(3)1月份的每畝收益:z=(
9
4
×12-3)(1+a%)=24+0.24a,畝數(shù)y=16+4=20,
(24+6+0.24a)×20×(1+2a%)=672,
化簡(jiǎn)得a2+175a-750=0,
解得a=
-175±
33625
2

a1≈4,a2≈-179(不合題意,舍去),
答:a的整數(shù)值約為4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=4x2-7x+4與直線y=x+b相交于A、B兩點(diǎn).
(1)求b的取值范圍;
(2)當(dāng)AB=2時(shí),求b的值;
(3)設(shè)坐標(biāo)原點(diǎn)為O,在(2)的條件下,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

兩個(gè)數(shù)相差左,設(shè)其中較大的一個(gè)數(shù)為x,那么它們的積y是如何隨x的變化而變化的?你能分別用函數(shù)表達(dá)式、表格和圖象表示這種變化嗎?
(1)用函數(shù)表達(dá)式表示:y=______;
(左)用表格表示:
x
y
(3)用圖象表示.
(4)根據(jù)以上三種表示方式回答下列問(wèn)題:
①自變量x的取值范圍是什么?
②圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo)分別是什么?
③如何描述y隨x的變化而變化的情況?
④你是分別通過(guò)哪種表示方式回答上面三個(gè)問(wèn)題的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一座拋物線型拱橋(如圖),正常水位時(shí)橋下河面寬20m,河面距拱頂4m.
(1)在如圖所示的平面直角坐標(biāo)系中,求出拋物線解析式;
(2)為了保證過(guò)往船只順利航行,橋下水面的寬度不得小于18m.求水面在正常水位基礎(chǔ)上漲多少m時(shí),就會(huì)影響過(guò)往船只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平面直角坐標(biāo)系xOy中,點(diǎn)A(m,6),B(n,1)為兩動(dòng)點(diǎn),其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當(dāng)S△AOB=10時(shí),拋物線經(jīng)過(guò)A,B兩點(diǎn)且以y軸為對(duì)稱軸,求拋物線對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點(diǎn)F,過(guò)點(diǎn)F作直線l交拋物線于P,Q兩點(diǎn),問(wèn)是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對(duì)應(yīng)的函數(shù)關(guān)系式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
2
m
x2-2x
與x軸負(fù)半軸交于點(diǎn)A,頂點(diǎn)為B,且對(duì)稱軸與x軸交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo)(用含m的代數(shù)式表示);
(2)D為BO中點(diǎn),直線AD交y軸于E,若點(diǎn)E的坐標(biāo)為(0,2),求拋物線的解析式;
(3)在(2)的條件下,點(diǎn)M在直線BO上,且使得△AMC的周長(zhǎng)最小,P在拋物線上,Q在直線BC上,若以A、M、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線經(jīng)過(guò)一直線y=3x-3與x軸、y軸的交點(diǎn),并經(jīng)過(guò)(2,5)點(diǎn).
求:(1)拋物線的解析式;
(2)拋物線的頂點(diǎn)坐標(biāo)及對(duì)稱軸;
(3)當(dāng)自變量x在什么范圍內(nèi)變化時(shí),函數(shù)y隨x的增大而增大?
(4)在坐標(biāo)系內(nèi)畫出拋物線的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2AD,線段EF=10.在EF上取一點(diǎn)M,分別以EM、MF為一邊作矩形EMNH、矩形MFGN,使矩形MFGN矩形ABCD.令MN=x,當(dāng)x為何值時(shí),矩形EMNH的面積S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△ABC中,∠B=90°,AB=4,BC=8,E是AC邊上一點(diǎn),ED⊥AB于點(diǎn)D,EF⊥BC于F,設(shè)AD為x,四邊形EFBD的面積為y.
(1)寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)求E點(diǎn)在AC邊上的什么位置時(shí),四邊形EFBD的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案