【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N。
(1)求證:MN=AM+BN;
(2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由。
【答案】(1)見解析;(2)MN=BN-AM
【解析】
試題分析:(1)根據(jù)同角的余角相等可得∠MAC=∠NCB,又∠AMC=∠CNB=90°,AC=BC,即可證得△AMC≌△CNB,從而可得AM=CN,MC=BN,即可得到結(jié)論;
(2)類似于(1)的方法,證得△AMC≌△CNB,從而有AM=CN,MC=BN,可推出AM、BN與MN之間的數(shù)量關(guān)系.
∵∠C=90°
∴∠MCA+∠BCN=90°
∵AM⊥MN,BN⊥MN
∴∠AMC=∠CNB=90°
∴∠MAC+∠MCA=90°
∴∠MAC=∠BCN
在△AMC和△CNB中
∠MAC=∠BCN
∠AMC=∠CMB,
AC=BC
∴△AMC≌△CNB
∴AM=CN,MC=BN
∴MN=MC+CN=AM+BN
(2)(7分)答: MN=BN-AM
證明:∵∠AMC=∠BNC=90°,
∴∠ACM+∠NCB=90°,
∠NCB+∠CBN=90°,
故∠ACM=∠CBN,
在△AMC和△CNB中,
∠ACM=∠CBN
∠AMC=∠BNC=90°
AC=BC,
∴△AMC≌△CNB,
∴CM =BN,
CN=AM,
∴MN=CM-CN=BN-AM,
∴MN=BN-AM。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對應(yīng)值
小騰根據(jù)學(xué)校函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過程,請補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應(yīng)的函數(shù)值y約為 ;
②該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)過(﹣2,4),(﹣4,4)兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)將沿x軸翻折,再向右平移2個單位,得到拋物線,直線y=m(m>0)交于M、N兩點(diǎn),求線段MN的長度(用含m的代數(shù)式表示);
(3)在(2)的條件下,、交于A、B兩點(diǎn),如果直線y=m與、的圖象形成的封閉曲線交于C、D兩點(diǎn)(C在左側(cè)),直線y=﹣m與、的圖象形成的封閉曲線交于E、F兩點(diǎn)(E在左側(cè)),求證:四邊形CEFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點(diǎn)E,點(diǎn)F在AC上,BD=DF.
(1)求證:CF=EB.
(2)若AB=12,AF=8,求CF的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com