【題目】如圖,△ABC內(nèi)接于⊙O,過點(diǎn)B的切線BE∥AC,點(diǎn)P是優(yōu)弧AC上一動(dòng)點(diǎn)(不與A,C重合),連接PA,PB,PC,PB交AC于D.
(1)求證:PB平分∠APC;
(2)當(dāng)PD=3,PB=4時(shí),求AB的長(zhǎng).
【答案】(1)證明見解析;(2)AB=2.
【解析】
(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)證得∠BAC=∠ACB,得出=,即可證得結(jié)論;
(2)通過證得△ABD∽△PBA,根據(jù)相似三角形的性質(zhì)即可求得.
(1)證明:∵BE是⊙O的切線,
∴∠EBC=∠BAC,
∵BE∥AC,
∴∠EBC=∠ACB,
∴∠BAC=∠ACB,
∴AB=BC,
∴=,
∴∠APB=∠CPB,
∴PB平分∠APC;
(2)解:∵∠APB=∠CPB,∠BAD=∠CPB,
∴∠BAD=∠APB,
∵∠ABP=∠DBA,
∴△ABD∽△PBA,
∴,
∴AB2=PBBD=PB(PB﹣PD)=4×1=4,
∴AB=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與x軸負(fù)半軸相交于點(diǎn)A,與y軸正半軸相交于點(diǎn)B,,直線l過A、B兩點(diǎn),點(diǎn)D為線段AB上一動(dòng)點(diǎn),過點(diǎn)D作軸于點(diǎn)C,交拋物線于點(diǎn)E.
(1)求拋物線的解析式;
(2)若拋物線與x軸正半軸交于點(diǎn)F,設(shè)點(diǎn)D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請(qǐng)寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個(gè)最大值;并寫出此時(shí)點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.
(3)連接BE,是否存在點(diǎn)D,使得和相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓市民享受到更多的優(yōu)惠,某市針對(duì)乘坐地鐵的人群進(jìn)行了調(diào)查.
(1)為獲得乘坐地鐵人群的月均花費(fèi)信息,下列調(diào)查方式中比較合理的是 ;
A.對(duì)某小區(qū)的住戶進(jìn)行問卷調(diào)查
B.對(duì)某班的全體同學(xué)進(jìn)行問卷調(diào)查
C.在市里的不同地鐵站,對(duì)進(jìn)出地鐵的人進(jìn)行問卷調(diào)查
(2)調(diào)查小組隨機(jī)調(diào)查了該市1000人上一年乘坐地鐵的月均花費(fèi)(單位:元),繪制了頻數(shù)分布直方圖,如圖所示.
① 根據(jù)圖中信息,估計(jì)平均每人乘坐地鐵的月均花費(fèi)的范圍是 元;
A.20—60 B.60—120 C.120—180
②為了讓市民享受到更多的優(yōu)惠,相關(guān)部門擬確定一個(gè)折扣線,計(jì)劃使30%左右的人獲得折扣優(yōu)惠.根據(jù)圖中信息,乘坐地鐵的月均花費(fèi)達(dá)到 元的人可以享受折扣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與x軸、y軸的交點(diǎn)為A,B.按以下步驟作圖:①以點(diǎn)A為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交AB,x軸于點(diǎn)C,D;②分別以點(diǎn)C,D為圓心,大于的長(zhǎng)為半徑作弧,兩弧在∠OAB內(nèi)交于點(diǎn)M;③作射線AM,交y軸于點(diǎn)E.則點(diǎn)E的坐標(biāo)為( )
A.(0,)B.(0,)C.(0,)D.(0,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年5月份,十八中九年級(jí)學(xué)生參加了中考體育模擬考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖,根據(jù)圖表中的信息解答下列問題:
分組 | 分?jǐn)?shù)段(分)) | 頻數(shù) |
A | 26≤x<31 | 2 |
B | 31≤x<36 | 5 |
C | 36≤x<41 | 15 |
D | 41≤x<46 | m |
E | 46≤x<51 | 10 |
(1)求全班學(xué)生人數(shù)和m的值.
(2)求扇形統(tǒng)計(jì)圖中的E對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)該班中考體育成績(jī)滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A為某封閉圖形邊界上一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x,線段AP的長(zhǎng)為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖所示,則該封閉圖形可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(x1,0),B(x2,0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=-3x+t上.
(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求2n2-5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx-1經(jīng)過點(diǎn)A(-2,1)和點(diǎn)B(-1,-1),拋物線C2:y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M.
(1)求拋物線C1的表達(dá)式;
(2)直接用含t的代數(shù)式表示線段MN的長(zhǎng);
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值;
(4)在(3)的條件下,設(shè)拋物線C1與y軸交于點(diǎn)P,點(diǎn)M在y軸右側(cè)的拋物線C2上,連接AM交y軸于點(diǎn)K,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQ和QN,當(dāng)KQ=1且∠KNQ=∠BNP時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com