15.問題背景:
在△ABC中,AB、BC、AC三邊的長分別為$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求這個三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上$\frac{7}{2}$;
(2)若△ABC三邊的長分別為$\sqrt{{m}^{2}+16{n}^{2}}$、$\sqrt{9{m}^{2}+4{n}^{2}}$、2$\sqrt{{m}^{2}+{n}^{2}}$(m>0,n>0,且m≠n),運(yùn)用構(gòu)圖法可求出這三角形的面積為5mn.

分析 (1)$\sqrt{5}$是直角邊長為1,2的直角三角形的斜邊;$\sqrt{10}$是直角邊長為1,3的直角三角形的斜邊;$\sqrt{13}$是直角邊長為2,3的直角三角形的斜邊,把它整理為一個矩形的面積減去三個直角三角形的面積;
(2)結(jié)合(1)易得此三角形的三邊分別是直角邊長為m,4n的直角三角形的斜邊;直角邊長為3m,2n的直角三角形的斜邊;直角邊長為2m,2n的直角三角形的斜邊.同樣把它整理為一個矩形的面積減去三個直角三角形的面積可得.

解答 解:(1)S△ABC=3×3-$\frac{1}{2}$×1×2-$\frac{1}{2}$×2×3-$\frac{1}{2}$×1×3=$\frac{7}{2}$;
(2)構(gòu)造△ABC如圖所示,

S△ABC=3m×4n-$\frac{1}{2}$×m×4n-$\frac{1}{2}$×3m×2n-$\frac{1}{2}$×2m×2n=5mn.
故答案為:(1)$\frac{7}{2}$;(2)5mn.

點(diǎn)評 此題主要考查了勾股定理應(yīng)用,利用了數(shù)形結(jié)合的思想,通過構(gòu)造直角三角形,利用勾股定理求解是解題關(guān)鍵,關(guān)鍵是結(jié)合網(wǎng)格用矩形及容易求得面積的直角三角形表示出所求三角形的面積進(jìn)行解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.為了參加社區(qū)“暢響G20”文藝演出,某校組建了46人的合唱隊(duì)和30人的舞蹈隊(duì),現(xiàn)根據(jù)演出需要,從舞蹈隊(duì)中抽調(diào)了部分同學(xué)參加合唱隊(duì),使合唱隊(duì)的人數(shù)恰好是舞蹈隊(duì)人數(shù)的3倍,設(shè)從舞蹈隊(duì)中抽調(diào)了x人參加合唱隊(duì),可得正確的方程是( 。
A.3(46-x)=30+xB.46+x=3(30-x)C.46-3x=30+xD.46-x=3(30-x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,點(diǎn)P是正方形ABCD的對角線BD上的一點(diǎn),PM⊥BC,PN⊥CD,垂足分別為點(diǎn)M,N.求證:AP=MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.某校為了加強(qiáng)學(xué)生的安全意識,組織學(xué)生參加安全知識競賽,并從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制了兩幅尚不完整的統(tǒng)計(jì)圖如圖所示.根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)若A組的頻數(shù)比B組小24,則頻數(shù)分布直方圖中a=16;b=40.
(2)扇形統(tǒng)計(jì)圖中n=126,并補(bǔ)全頻數(shù)分布直方圖;
(3)若成績在80分以上為優(yōu)秀,全校共有2000名學(xué)生,請估計(jì)成績優(yōu)秀的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),且A點(diǎn)坐標(biāo)為(-3,0),經(jīng)過B點(diǎn)的直線交拋物線于點(diǎn)D(-2,-3).
(1)求拋物線的解析式;
(2)過x軸上點(diǎn)E(a,0)(E點(diǎn)在B點(diǎn)的右側(cè))作直線EF∥BD,交拋物線于點(diǎn)F,求直線BD和直線EF的解析式;
(3)是否存在實(shí)數(shù)a使四邊形BDFE是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.如圖,已知四邊形ABCD是邊長為4的正方形,以AB為直徑向正方形內(nèi)作半圓,P為半圓上一動點(diǎn)(不與A、B重合),當(dāng)PA=2$\sqrt{2}$或$\frac{8\sqrt{5}}{5}$時,△PAD為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,直線y=-2x+4與x軸、y軸分別交于A、B兩點(diǎn),把△AOB繞著點(diǎn)O逆時針旋轉(zhuǎn)90°得到△COD.
(1)請直接寫出C、D兩點(diǎn)的坐標(biāo);
(2)求出經(jīng)過A、B、C三點(diǎn)拋物線的解析式;
(3)點(diǎn)P是第(2)題中拋物線對稱軸上的一個動點(diǎn),當(dāng)△PAB的周長最小時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.人類的血型一般可分為A,B,AB,O型四種,寧波市中心血戰(zhàn)2015年共有8萬人無償獻(xiàn)血,血戰(zhàn)統(tǒng)計(jì)人員由電腦隨機(jī)選出20人,血型分別是:
O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.
(1)請?jiān)O(shè)計(jì)統(tǒng)計(jì)表分類統(tǒng)計(jì)這20人各類血型人數(shù);
(2)若每位獻(xiàn)血者平均獻(xiàn)血200毫升,一年中寧波市各醫(yī)院O型血用血量約為6×106毫米,請你估計(jì)2015年這8萬人所獻(xiàn)的O型血是否夠用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知a=$\frac{1}{2+\sqrt{3}}$,求$\frac{{a}^{2}-a-6}{a+2}$+$\frac{\sqrt{{a}^{2}-2a+1}}{{a}^{2}-a}$的值.

查看答案和解析>>

同步練習(xí)冊答案