在同一坐標系中,若正比例函數(shù)y=2x與反比例函數(shù)y=
k-2x
(k≠2)的圖象有公共點,則k的一個值可以是
 
(寫出一個即可).
分析:根據(jù)正比例函數(shù)y=2x與反比例函數(shù)y=
k-2
x
(k≠2)的圖象有公共點,則2x=
k-2
x
,根據(jù)一元二次方程有解,求得k的取值范圍,寫出一個k的值即可.
解答:解:∵正比例函數(shù)y=2x與反比例函數(shù)y=
k-2
x
(k≠2)的圖象有公共點,
∴2x=
k-2
x

∴2x2-k+2=0有解,
∴△=0+8(k-2)>0,
解得k>2,
則k的一個值可以是3.
故答案為3.
點評:本題主要考查反比例函數(shù)與一次函數(shù)的交點問題的知識點,解答本題的關鍵是理解兩個函數(shù)圖象有交點的含義,此題是開放題,k值不確定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為
AB
(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為|
AB
|.顯然,有向線段
AB
和有向線段
BA
長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段
OP
,其方向與x軸正方向相同,長度(或模)是|
OP
|=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出
OA
有向線段,使得
OA
=3
2
OA
與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段
OB
的終點B的坐標為(3,
3
),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,|
MA
|+|
AP
|=|
MP
|
成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+2ax-b與x軸交于A、B兩點,與y軸正半軸交于C點,且A(-4,0),OC=2OB.
(1)求出拋物線的解析式;
(2)如圖①,作矩形ABDE,使DE過點C,點P是AB邊上的一動點,連接PE,作PF⊥PE交BD于點F.設線段PB的長為x,線段BF的長為
1
2
y
.當P點運動時,求y與x的函數(shù)關系式并寫出自變量x的取值范圍,在同一直角坐標系中,該函數(shù)的圖象與圖①的拋物線中y≥0的部分有何關系?
(3)如圖②,在圖①的拋物線中,點H為其頂點,G為拋物線上一動點(不與H重合),取點N(-1,0),作MN⊥GN且MN=
2
3
GN
(點M、N、G按逆時針順序),當點G在拋物線上運動時,直線AM、GH是否存在某種位置關系?若存在,寫出并證明你的結(jié)論;若不存在,請說明理由. 精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年重慶市一中九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線y=ax2+2ax-b與x軸交于A、B兩點,與y軸正半軸交于C點,且A(-4,0),OC=2OB.
(1)求出拋物線的解析式;
(2)如圖①,作矩形ABDE,使DE過點C,點P是AB邊上的一動點,連接PE,作PF⊥PE交BD于點F.設線段PB的長為x,線段BF的長為.當P點運動時,求y與x的函數(shù)關系式并寫出自變量x的取值范圍,在同一直角坐標系中,該函數(shù)的圖象與圖①的拋物線中y≥0的部分有何關系?
(3)如圖②,在圖①的拋物線中,點H為其頂點,G為拋物線上一動點(不與H重合),取點N(-1,0),作MN⊥GN且(點M、N、G按逆時針順序),當點G在拋物線上運動時,直線AM、GH是否存在某種位置關系?若存在,寫出并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第7章《銳角三角函數(shù)》中考題集(29):7.5 解直角三角形(解析版) 題型:解答題

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為||.顯然,有向線段和有向線段長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段,其方向與x軸正方向相同,長度(或模)是||=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出有向線段,使得=3與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段的終點B的坐標為(3,),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)

查看答案和解析>>

科目:初中數(shù)學 來源:第4章《銳角三角形》中考題集(26):4.3 解直角三角形及其應用(解析版) 題型:解答題

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為||.顯然,有向線段和有向線段長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段,其方向與x軸正方向相同,長度(或模)是||=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出有向線段,使得=3,與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段的終點B的坐標為(3,),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)

查看答案和解析>>

同步練習冊答案