【題目】在正方形ABCD中,AC為對角線,點EAC上一點,連接EB,ED.

(1)求證:△BEC≌△DEC;

(2)延長BEAD于點F,當(dāng)∠BED120°時,求∠EFD的度數(shù).

【答案】(1)見解析;(2)105°

【解析】試題分析:(1)根據(jù)正方形的性質(zhì)可得BC=CD,ECB=ECD=45°,利用全等三角形的判定方法判定BEC≌△DEC(2)根據(jù)全等三角形的性質(zhì)可得BEC=DEC= ,因為BED=120°,所以BEC=60°=AEF,

所以EFD=60°+45°=105°.

試題解析: (1)證明:∵四邊形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°,

∴在△BEC與△DEC,

,

∴△BEC≌△DEC(SAS),

(2)∵△BEC≌△DEC,

∴∠BEC=DEC= ,

∵∠BED=120°,

∴∠BEC=60°=∠AEF,

∴∠EFD=60°+45°=105°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一列有理數(shù)-1,2,-3,4,-5,6,…如圖排序,根據(jù)圖中的排列規(guī)律可知“峰1”中峰頂?shù)奈恢?/span>(C的位置)是有理數(shù)4,那么“峰4”中C的位置是有理數(shù)________有理數(shù)“2018”應(yīng)排在A,BC,DE中的________位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點 A 表示的有理數(shù)為﹣4,點 B 表示的有理數(shù)為 6,點 P A 出發(fā)以每秒 2 個單位長度的速度在數(shù)軸上沿由 A B 方向運動,當(dāng)點 P 達(dá)點 B 后立即返回,仍然以每秒 2 個單位長度的速度運動至點 A 停止運動.設(shè) 運動時間為 t(單位:秒).

1)求 t=2 時點 P 表示的有理數(shù);

2)求點 P AB 的中點時 t 的值;

3)在點 P 由點 A 到點 B 的運動過程中,求點 P 與點 A 的距離(用含 t 的代數(shù)式表示);

4在點 P 由點 B 到點 A 的返回過程中 P 表示的有理數(shù)是多少(用含 t 代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年起,昆明將迎來高鐵時代,這就意味著今后昆明的市民外出旅行的路程與時間將大大縮短,但也有不少游客根據(jù)自己的喜好依然選擇乘坐普通列車;已知從昆明到某市的高鐵行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍,請完成以下問題:(1)普通列車的行駛路程為________千米;(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求普通列車和高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABC 中,∠C=90°,DBBC 于點 ,分別以點 D 和點 為圓心,以大于 的長為半徑作弧,兩弧相交于點 E 和點 ,作直線 EF,延長 AB 于點 ,連接 DG,下面是說明 ∠A=∠D 的說理過程,請把下面的說理過程補(bǔ)充完整:

因為 DBBC(已知),

所以 DBC=90°( )

因為 C=90°(已知),

所以 DBC=C(等量代換),

所以 DBAC ( ) ,

所以 (兩直線平行,同位角相等);

由作圖法可知:直線 EF 是線段 DB ( )

所以 GD=GB,線段 (上的點到線段兩端點的距離相等),

所以 ( ) ,因為 A=1(已知),

所以 A=D(等量代換).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2 ,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將 繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD對角線AC上一點,EFAB,EGBC,垂足分別為F,G,若正方形ABCD的周長是40cm.

(1)求證:四邊形BFEG是矩形;

(2)求四邊形EFBG的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,垂足為O,直線PQ經(jīng)過點O,且B在直線l上,位于點O下方,C在直線PQ上運動連接BC過點C,交直線MN于點A,連接A、C與點O都不重合

小明經(jīng)過畫圖、度量發(fā)現(xiàn):在中,始終有一個角與相等,這個角是________________;

當(dāng)時,在圖中畫出示意圖并證明;

探索之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 1 +tan60°+|3﹣2 |.

查看答案和解析>>

同步練習(xí)冊答案