【題目】如圖,已知一次函數(shù)y1kx+b與反比例函數(shù)y2x0)的圖象分別交于點A2,4)和點B4n),與坐標軸分別交于點C和點D

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求y1y2時,自變量x的取值范圍;

3)若點Px軸上一動點,當△ABP為直角三角形時,求點P的坐標.

【答案】1y2,y1=﹣x+6;(20x2x4;(3P點坐標為(﹣2,0)或(2,0).

【解析】

1)先把A點坐標代入y2中求出m得到反比例函數(shù)解析式為y2,再利用反比例函數(shù)解析式確定B點坐標,然后利用待定系數(shù)法求一次函數(shù)解析式;

2)在第一象限內(nèi),寫出反比例函數(shù)圖象在一次函數(shù)圖象上方所對應的自變量的范圍即可;

3)設Pt,0),利用兩點間的距離公式得到PA2=(t22+42,PB2=(t42+22,AB2=(422+242,討論:根據(jù)勾股定理,當∠PAB90°時,t24t+20+8t28t+20;當∠PBA90°時,t28t+20+8t24t+20;當∠APB90°時,t24t+20+t28t+208,然后分別解關于t的方程可得到P點坐標.

解:(1)把A2,4)代入y2m2×48,

∴反比例函數(shù)解析式為y2

B4,n)代入y24n8,解得n2,則B4,2),

A2,4)和B4,2)代入y1kx+b,

解得

∴一次函數(shù)解析式為y1=﹣x+6;

2)根據(jù)函數(shù)圖象可得:當0x2x4時,y1y2;

3)設Pt,0),

A2,4),B42

PA2=(t22+42t24t+20,PB2=(t42+22t28t+20,AB2=(422+2428,

當∠PAB90°時,PA2+AB2PB2,即t24t+20+8t28t+20,解得t=﹣2,此時P點坐標為(﹣2,0),

當∠PBA90°時,PB2+AB2PA2,即t28t+20+8t24t+20,解得t2,此時P點坐標為(2,0),

當∠APB90°時,PA2+PB2AB2,即t24t+20+t28t+208,整理得t26t+160,方程沒有實數(shù)解,

綜上所述,P點坐標為(﹣2,0)或(2,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB,DCB延長線上一點,以BD為邊向上作等邊三角形EBD,連接AD,若AD11,且∠ABE2ADE,則tanADE的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象與反比例函數(shù)y的圖象相交于AB兩點,其中點A的坐標為(﹣1,4),點B的坐標為(4,n).

1)求這兩個函數(shù)的表達式;

2)根據(jù)圖象,直接寫出滿足k1x+bx的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國古代的數(shù)學專著,它的出現(xiàn)標志中國古代數(shù)學形成了完整的體系.其中有一個問題:“今有二馬、一牛價過-萬,如半馬之價:一馬、二牛價不滿一萬,如半牛之價.問牛、馬價各幾何?”其大意為:現(xiàn)有兩匹馬加一頭牛的價錢超過一萬,超過的部分正好是半匹馬的價錢:一匹馬加上兩頭牛的價錢則不到一萬,不足的部分正好是半頭牛的價錢.問一頭牛、一匹馬各多少錢?設一匹馬值錢、一頭牛值錢,則符合題意的方程組為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ABC90°,ABBC4,點DE分別是邊AB、AC的中點,連接DE,將△ADE繞點A按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α,BD、CE所在直線相交所成的銳角為β

(1)問題發(fā)現(xiàn)當α時,_____;β_____°

(2)拓展探究

試判斷:當0°≤α360°時,β的大小有無變化?請僅就圖2的情形給出證明.

(3)在△ADE旋轉(zhuǎn)過程中,當DEAC時,直接寫出此時△CBE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某微商銷售的某商品每袋成本20元,設銷售價格為x(單位:元/袋),該微商發(fā)現(xiàn)銷售量y與銷售價格x之間的關系如表:

銷售價格x(元/袋)

25

30

35

40

銷售件數(shù)y

275

250

225

200

1)求y關于x的函數(shù)表達式;

2)根據(jù)物價部門的規(guī)定,商品的利潤率不能超過100%,該微商應該如何定價,才能使獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,在△ABC中,BA=BC,D,EAC邊上的兩點,且滿足∠DBE=ABC(0°<∠CBEABC).以點B為旋轉(zhuǎn)中心,將△BEC按逆時針方向旋轉(zhuǎn)∠ABC,得到△BE′A(點C與點A重合,點E到點E′處),連接DE′.求證:DE′=DE;

2)如圖2,在△ABC中,BA=BC,∠ABC=90°D,EAC邊上的兩點,

且滿足∠DBE=ABC(0°<∠CBE45°) .求證:DE2=AD2+EC2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系,直線y軸交于點A,與雙曲線交于點

1)求點B的坐標及k的值;

2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若的面積為6,求直線CD的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,,點為圓上一點,將劣弧沿弦翻折交于點,則劣弧的弧長是_______

查看答案和解析>>

同步練習冊答案