【題目】如圖,已知:在ABC中,∠A=90°,AB=AC=1PAC上不與A、C重合的一動點(diǎn),PQBCQ,QRABR

1)求證:PQ=CQ;

2)設(shè)CP的長為xQR的長為y,求yx之間的函數(shù)關(guān)系式及自變量x的取值范圍,并在平面直角坐標(biāo)系作出函數(shù)圖象

3PR能否平行于BC?如果能,試求出x的值;若不能,請簡述理由.

【答案】(1)證明見解析;(2)y=﹣x+(0<x<1);(3)PR不能平行于BC.

【解析】試題分析:1)根據(jù)題意易得△ABC是等腰直角三角形,則∠B=C=45°,然后利用PQCQ可得到△PCQ為等腰直角三角形,由此得證;

2)根據(jù)等腰直角三角形的性質(zhì)求出BC=AB=CQ=PC=x,同理可證得△BQR是等腰直角三角形,則BQ=RQ=y,所以可得y+x=,變形可求出解析式,然后描點(diǎn)畫圖即可;

3)由AR=1–y,AP=1–x,則AR=1–x+1),當(dāng)AR=AP時,PRBC,所以1–x+1=1–x,解得x=,然后利用0<x<1可判斷.

試題解析:(1∵∠A=90°AB=AC=1,

∴△ABC為等腰直角三角形,

∴∠B=C=45°,

PQCQ

∴△PCQ為等腰直角三角形,

PQ=CQ;

2)解:∵△ABC為等腰直角三角形,

BC=AB=,

∵△PCQ為等腰直角三角形,

CQ=PC=x,

同理可證得為BQR等腰直角三角形,

BQ=RQ=y

BQ+CQ=BC,

y+x=,

y=x+10<x<1),

如圖,

3)能.

理由如下:

AR=1–yAP=1–x,

AR=1–x+1),

當(dāng)AR=AP時,PRBC,

1–x+1=1–x

解得x=,

∵0<x<1,PR能平行于BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方便交通,綠色出行,人們常選擇以共享單車作為代步工具、圖(1)所示的是一輛自行車的實物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔ACCD的長分別為45cm60cm,且它們互相垂直,座桿CE的長為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°

(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259tan75°=3.732

圖(1 圖(2

1)求車架檔AD的長;

2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.在△ABC,ACB=90°AC=BC=,B為圓心、1為半徑作圓,設(shè)點(diǎn)P為⊙B上一點(diǎn),線段CP繞著點(diǎn)C順時針旋轉(zhuǎn)90°,得到線段CD,連接DA、PDPB

1求證AD=BP;

2DP與⊙B相切,則∠CPB的度數(shù)為      ;

3如圖2,當(dāng)B、P、D三點(diǎn)在同一條直線上時,BD的長

4BD的最小值為      ;BD的最大值為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸正半軸上的兩點(diǎn)分別表示有理數(shù),為原點(diǎn),若,線段.

1____________;

2)若點(diǎn)從點(diǎn)出發(fā),以每秒2個單位長度向軸正半軸運(yùn)動,求運(yùn)動時間為多少時;點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)距離的3倍;

3)數(shù)軸上還有一點(diǎn)表示的數(shù)為32,若點(diǎn)和點(diǎn)同時從點(diǎn)和點(diǎn)出發(fā),分別以每秒2個單位長度和每秒1個單位長度的速度向點(diǎn)運(yùn)動,點(diǎn)到達(dá)點(diǎn)后,再立刻以同樣的速度返回,運(yùn)動到終點(diǎn),求點(diǎn)和點(diǎn)運(yùn)動多少秒時,兩點(diǎn)之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于兩點(diǎn),的中點(diǎn),上一點(diǎn),四邊形是菱形,則面積為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD,垂足為O,點(diǎn)E,F,GH分別為邊AB,BC,CDAD的中點(diǎn).若AC=10,BD=6,則四邊形EFGH的面積為( 。

A. 15B. 20C. 30D. 60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】單詞的記憶效率是指復(fù)習(xí)一定量的單詞,一周后能正確默寫出的單詞個數(shù)與復(fù)習(xí)的單詞個數(shù)的比值.如圖描述了某次單詞復(fù)習(xí)中小華,小紅小剛和小強(qiáng)四位同學(xué)的單詞記憶效率y與復(fù)習(xí)的單詞個數(shù)x的情況,則這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫出的單詞個數(shù)最多的是( 。

A. 小華B. 小紅C. 小剛D. 小強(qiáng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的函數(shù)表達(dá)式;

(2)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動點(diǎn),過點(diǎn)H且與y軸平行的直線與BC,CE分別相交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動到何處時,四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo);

(3)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長最小,求出點(diǎn)P,Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)A在原點(diǎn)左側(cè),點(diǎn)B在原點(diǎn)右側(cè),且點(diǎn)A到原點(diǎn)的距離是點(diǎn)B到原點(diǎn)距離的2倍,AB=15.

1)點(diǎn)A表示的數(shù)為________,點(diǎn)B表示的數(shù)為________;

2)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個單位長度的速度向點(diǎn)B方向運(yùn)動;同時,點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動,當(dāng)與點(diǎn)P重合后,馬上改變方向與點(diǎn)P同向而行且速度始終為每秒2個單位長度。設(shè)運(yùn)動時間為t秒。

①當(dāng)點(diǎn)P與點(diǎn)Q重合時,求t的值;

②當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案