先化簡,后求值:
a-1
a+1
-
a2-a
a2-1
,其中a=
3
-1.
考點:分式的化簡求值
專題:
分析:先根據(jù)分式混合運算的法則把原式進行化簡,再把a的值代入進行計算即可.
解答:解:原式=
a-1
a+1
-
a(a-1)
(a+1)(a-1)

=
a-1
a+1
-
a
a+1

=-
1
a+1

∴當a=
3
-1時,
原式=-
1
3
-1+1
=-
1
3
=-
3
3
點評:本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,已知點P(0,4),點A在線段OP上,點B在x軸正半軸上,且AP=OB=t,0<t<4,以AB為邊在第一象限內作正方形ABCD;過點C、D依次向x軸、y軸作垂線,垂足為M,N,設過O,C兩點的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△
 
≌△BMC(不需證明);用含t的代數(shù)式表示A點縱坐標:A(0,
 
);
(2)求點C的坐標,并用含a,t的代數(shù)式表示b;
(3)當t=1時,連接OD,若此時拋物線與線段OD只有唯一的公共點O,求a的取值范圍;
(4)當拋物線開口向上,對稱軸是直線x=2-
1
2t
,頂點隨著t的增大向上移動時,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用無刻度的直尺作圖,保留作圖痕跡,分別作出圖中∠AOB的平分線:
(1)如圖(1),∠AOB的兩邊與一圓切于點A、B,點M、N是優(yōu)弧AB的三等分點;
(2)如圖(2),∠AOB的兩邊與一圓切于點A、B、M、N,且AM=BN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:(1+
2
2-
8
+(
1
3
-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC的三個頂點都在9×9的網格的格點上,在網格中標出三個格點P,使∠APB=∠ACB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

化簡求值:
2b
a2
-b
2
 
+
1
a+b
,其中a=-2,b=1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

不等式組
x+3>0
x-4<0
的解集是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一段拋物線y=-x(x-1)(0≤x≤1)記為m1,它與x軸交點為O、A1,頂點為P1;將m1繞點A1旋轉180°得m2,交x軸于點A2,頂點為P2;將m2繞點A2旋轉180°得m3,交x軸于點A3,頂點為P3,…,如此進行下去,直至得m10,頂點為P10,則P10的坐標為(
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

直徑為10cm的⊙O中,弦AB=5cm,則弦AB所對的圓周角是
 

查看答案和解析>>

同步練習冊答案