分析 (1)把A坐標(biāo)代入一次函數(shù)解析式求出m的值,確定出一次函數(shù)解析式,把A坐標(biāo)代入反比例解析式求出k的值,即可確定出反比例函數(shù)解析式;
(2)由題意,找出一次函數(shù)圖象位于反比例函數(shù)圖象上方時(shí)x的范圍即可;
(3)存在,理由為:由四邊形ABDC為平行四邊形,得到AC=BD,且AC∥BD,由AC與x軸垂直,得到BD與x軸垂直,根據(jù)A坐標(biāo)確定出AC的長(zhǎng),即為BD的長(zhǎng),聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B坐標(biāo),即可確定出D坐標(biāo).
解答 解:(1)把A(1,2)代入y=mx得:m=2,
則一次函數(shù)解析式是y=2x,
把A(1,2)代入y=$\frac{k}{x}$得:k=2,
則反比例解析式是y=$\frac{2}{x}$;
(2)根據(jù)圖象可得:-1<x<0或x>1;
(3)存在,理由為:
如圖所示,四邊形ABDC為平行四邊形,
∴AC=BD,AC∥BD,
∵AC⊥x軸,
∴BD⊥x軸,
由A(1,2),得到AC=2,
∴BD=2,
聯(lián)立得:$\left\{\begin{array}{l}{y=2x}\\{y=\frac{2}{x}}\end{array}\right.$,
消去y得:2x=$\frac{2}{x}$,即x2=1,
解得:x=1或x=-1,
∵B(-1,-2),
∴D的坐標(biāo)(-1,-4),同法可得D′(-1,0),D″(3,4).
故滿足條件的點(diǎn)D坐標(biāo)為(-1,-4)或(-1,0)或(3,4)
點(diǎn)評(píng) 此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定一次函數(shù)解析式以及反比例函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn),平行四邊形的性質(zhì),以及坐標(biāo)與圖形性質(zhì),利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{\frac{1}{2}}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{20}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 99.55×102 | B. | 9.955×103 | C. | 9.9×103 | D. | 10×103 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com