已知:如圖,⊙O半徑為5,PC切⊙O于點(diǎn)C,PO交⊙O于點(diǎn)A,PA=4,那么PC的長(zhǎng)等于


  1. A.
    6
  2. B.
    2數(shù)學(xué)公式
  3. C.
    2數(shù)學(xué)公式
  4. D.
    2數(shù)學(xué)公式
D
分析:延長(zhǎng)AO交⊙O于B,由切割線定理可得PC2=PA•PB,進(jìn)而求出PC的長(zhǎng).
解答:解:延長(zhǎng)AO交⊙O于B,
則AB=2OA=10;
由切割線定理得:PC2=PA•PB;
則有:PC2=4×(10+4)=56,
解得:PC=2;
故選D.
點(diǎn)評(píng):此題主要考查的是切割線定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,半徑為1的⊙M經(jīng)過直角坐標(biāo)系的原點(diǎn)O,且與x軸、y軸分別交精英家教網(wǎng)于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(
3
,0),⊙M的切線OC與直線AB交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo);
(2)求∠ACO的度數(shù);
(3)求直線OC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:如圖,⊙O半徑為6.過⊙O外一點(diǎn)P作⊙O的切線PA,A為切點(diǎn),∠OPA=30°.過PO與⊙O的交點(diǎn)B作直線BC交PA于點(diǎn)C,交⊙O于點(diǎn)D.
(1)求∠ADC的度數(shù);
(2)如果BC⊥PA,求此時(shí)弦BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O半徑為5,PC切⊙O于點(diǎn)C,PO交⊙O于點(diǎn)A,PA=4,那么PC的長(zhǎng)等于( 。
A、6
B、2
5
C、2
10
D、2
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,半徑為1的⊙M經(jīng)過直角坐標(biāo)系的原點(diǎn)O,且與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(
3
,0),⊙M的切線OC與直線AB交于點(diǎn)C.則∠ACO=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年廣東省廣州市白云區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知,如圖,半徑為1的⊙M經(jīng)過直角坐標(biāo)系的原點(diǎn)O,且與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(,0),⊙M的切線OC與直線AB交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo);
(2)求∠ACO的度數(shù);
(3)求直線OC的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案