分析 (1)由MG∥AD,NF∥AB,可證得四邊形AMEN是平行四邊形,又由四邊形ABCD是菱形,BM=DN,可得AM=AN,即可證得四邊形AMEN是菱形;
(2)易得四邊形CGEF是菱形;即可得S△AEM=S△AEN,S△CEF=S△CEG,S△ABC=S△ADC,繼而求得答案.
解答 (1)證明:∵M(jìn)G∥AD,NF∥AB,
∴四邊形AMEN是平行四邊形,
∵四邊形ABCD是菱形,
∴AB=AD,
∵BM=DN,
∴AB-BM=AD-DN,
∴AM=AN,
∴四邊形AMEN是菱形;
(2)解:∵四邊形AMEN是菱形,
∴S△AEM=S△AEN,
同理:四邊形CGEF是菱形,
∴S△CEF=S△CEG,
∵四邊形ABCD是菱形,
∴S△ABC=S△ADC,
∴S四邊形MBFE=S四邊形DNEG,S四邊形MBCE=S四邊形DNEC,S四邊形MBCG=S四邊形DNFC,S四邊形ABFE=S四邊形ADGE,S四邊形ABFN=S四邊形ADGM.
點(diǎn)評(píng) 此題考查了菱形的性質(zhì)與判定.注意證得四邊形AMEN是菱形與四邊形CGEF是菱形是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n2+n | B. | n2+n+1 | C. | n2+2n | D. | n2+2n+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com