如圖所示,在正方形ABCD的對角線上取點(diǎn)E,使得∠BAE=,連結(jié)AE,CE.延長CE到F,連結(jié)BF,使得BC=BF.若AB=1,則下列結(jié)論:①AE=CE; ②F到BC的距離為;③BE+EC=EF;④;⑤.其中正確的個數(shù)是
A.2個 B.3個 C.4個 D.5個
B
【解析】
試題分析:根據(jù)正方形的性質(zhì)推出AB=BC,∠ABD=∠CBD=45,證△ABE≌△CBE,即可判斷①;過F作FH⊥BC于H,根據(jù)直角三角形的性質(zhì)即可求出FH;過A作AM⊥BD交于M,根據(jù)勾股定理求出BD,根據(jù)三角形的面積公式即可求出高AM,根據(jù)三角形的面積公式求出即可.
∵正方形ABCD,
∴AB=BC,∠ABD=∠CBD=45°,
∵BE=BE,
∴△ABE≌△CBE,
∴AE=CE,∴①正確;
過F作FH⊥BC于H,
∵BF=BC=1,
∴∠BFC=∠FCB=15°,
∴FH=BF=,∴②錯誤;
∵Rt△BHF中,F(xiàn)H=,BF=1,
∵BD是正方形ABCD的對角線,
∴AE=CE,
在EF上取一點(diǎn)N,使BN=BE,
又∠NBE=∠EBC+∠ECB=45°+15°=60°,
∴△NBE為等邊三角形,
∴∠ENB=60°,又∠NFB=15°,
∴∠NBF=45°,又∠EBC=45°,
∴∠NBF=∠EBC,又BF=BC,∠NFB=∠ECB=15°,
可證△FBN≌△CBE,
∴NF=EC,
故BE+EC=EN+NF=EF,
∴③正確;
過A作AM⊥BD交于M,
根據(jù)勾股定理求出BD=,
由面積公式得:AD×AB=BD×AM,解得
∵∠ADB=45°,∠AED=60°,
∴,
∴,∴④錯誤;
故選B.
考點(diǎn):正方形的性質(zhì),全等三角形的性質(zhì)和判定,三角形的面積,勾股定理,含30°角的直角三角形的性質(zhì)
點(diǎn)評:本題知識點(diǎn)多,綜合性強(qiáng),是中考常見題,綜合運(yùn)用這些性質(zhì)進(jìn)行證明是解此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
1 |
4 |
| ||
8 |
| ||
12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com