在直角梯形ABCD中,AD∥BC,∠C=90度,BC=16,AD=21,DC=12,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿線段DA方向以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng). 點(diǎn)P、Q分別從點(diǎn)D、C同時(shí)出發(fā),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)設(shè)△BPQ的面積為S,求S和t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),以B、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰三等形?(分類討論)
(1)作PM⊥BC,垂足為M。
則四邊形PDCM為矩形。
∴PM=DC=12
∵QB=16-t,∴S=
(2)可知CM=PD=2t,CQ=t
若以B、P、Q三頂為頂點(diǎn)的三角形是等腰三角形,可以分三種情況:
①PQ=BQ,在Rt△PMQ中,PQ2=PM+QM=122+t2 解t=
②BP=BQ,在Rt△PMB中,BP2=(16-2t)2+122,3t2-32t+144=0無(wú)實(shí)根,
∴PB≠BQ
③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122,解得t1=,t2=16(舍去)
綜上可知:t=或t=,B、P、Q三點(diǎn)為頂點(diǎn)三角形是等腰三角形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
5
| ||
2 |
5 |
5
| ||
2 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com