【題目】下列結(jié)淪中,錯誤的有( 。 ①Rt△ABC中,已知兩邊分別為3和4,則第三邊的長為5;
②三角形的三邊分別為a、b、c , 若a2+b2=c2 , 則∠A=90°;
③若△ABC中,∠A:∠B:∠C=1:5:6,則這個三角形是一個直角三角形;
④若(x﹣y)2+M=(x+y)2成立,則M=4xy .
A.0個
B.1個
C.2個
D.3個
【答案】C
【解析】解答:①分兩種情況討論:當(dāng)3和4為直角邊時,斜邊為5;當(dāng)4為斜邊時,另一直角邊是 ,所以錯誤; ②三角形的三邊分別為a、b、c , 若a2+b2=c2 , 應(yīng)∠C=90°,所以錯誤;
③最大角∠C= ×6=90°,這個三角形是一個直角三角形,正確;
④若(x﹣y)2+M=(x+y)2成立,則M=(x+y)2﹣(x﹣y)2=4xy , 正確.
故選C.
分析:根據(jù)勾股定理以及逆定理即可解答,本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.勾股定理的逆定理:若三角形三邊滿足a2+b2=c2 , 那么這個三角形是直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程 + = 恰有一個實(shí)根,則滿足條件的實(shí)數(shù)a的值的個數(shù)為( ).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)為A(2,一1)的拋物線與y軸交于點(diǎn)B,與x軸交于C、D兩點(diǎn),點(diǎn)C坐標(biāo)(1,O);
(1)求這條拋物線的表達(dá)式;
(2)連接AB、BD、DA,求cos∠ABD的大;
(3)點(diǎn)P在x軸正半軸上位于點(diǎn)D的右側(cè),如果∠APB=45°,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xoy中,一次函數(shù)y1=k1x+b的圖象與反比例函數(shù)y2=的圖象交于A(一1,6)、B(a,一2)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)連接OA、0B,求ΔAOB的面積;
(3)當(dāng)x滿足_______________時, 0<y1≤y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE⊥AB于E,若DE=1cm,∠CBD=30°,求∠A的度數(shù)和AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com