【題目】已知△ABC,AB=AC,D為直線BC上一點(diǎn),E為直線AC上一點(diǎn),AD=AE,設(shè)∠BAD=α,CDE=β.

(1)如圖,若點(diǎn)D在線段BC上,點(diǎn)E在線段AC上.

①如果∠ABC=60°,ADE=70°,那么α=   °,β=   °;

②求α,β之間的關(guān)系式.

(2)請直接寫出不同于以上②中的α,β之間的關(guān)系式可以是   .(寫出一個(gè)即可.)

【答案】(1)20, 10;α=2β; (2)α=2β﹣180°α=180°﹣2β.

【解析】

(1)①先利用等腰三角形的性質(zhì)求出DAE,進(jìn)而求出BAD,即可得出結(jié)論;

利用等腰三角形的性質(zhì)和三角形的內(nèi)角和即可得出結(jié)論;

(2)①當(dāng)點(diǎn)ECA的延長線上,點(diǎn)D在線段BC上,同(1)的方法即可得出結(jié)論;當(dāng)點(diǎn)ECA的延長線上,點(diǎn)DCB的延長線上,同(1)的方法即可得出結(jié)論.

(1)①∵AB=AC,ABC=60°,

∴∠BAC=60°,

AD=AE,ADE=70°,

∴∠DAE=180°﹣2ADE=40°,

α=BAD=60°﹣40°=20°,

∴∠ADC=BAD+ABD=60°+20°=80°,

β=CDE=ADC﹣ADE=10°,

故答案為:20,10;

②設(shè)∠ABC=x,AED=y,

∴∠ACB=x,AED=y,

在△DEC中,y=β+x,

在△ABD中,α+x=y+β=β+x+β,

α=2β;

(2)①當(dāng)點(diǎn)ECA的延長線上,點(diǎn)D在線段BC上,

如圖1

設(shè)∠ABC=x,ADE=y,

∴∠ACB=x,AED=y,

在△ABD中,x+α=β﹣y,

在△DEC中,x+y+β=180°,

α=2β﹣180°,

②當(dāng)點(diǎn)ECA的延長線上,點(diǎn)DCB的延長線上,

如圖2,同①的方法可得α=180°﹣2β.

故答案為:α=2β﹣180°α=180°﹣2β.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=6PB=8,PC=10,若將PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到P′AB,則APB等于(

A150° B105° C120° D90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 A 時(shí)測得某樹(垂直于地面)的影長為 4 ,B 時(shí)又測得該樹的影長為 16 若兩次日 照的光線互相垂直,則樹的高度為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲,乙兩名自行車騎手均從P地出發(fā),騎車前往距P60千米的Q地,當(dāng)乙騎手出發(fā)了1.5小時(shí),此時(shí)甲,乙兩名騎手相距6千米,因甲騎手接到緊急任務(wù),故甲到達(dá)Q地后立即又原路返回P地甲,乙兩名騎手距P地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)圖象如圖所示.(其中折線OABCD(實(shí)線)表示甲,折線OEFG(虛線)表示乙)

1)甲騎手在路上停留   小時(shí),甲從Q地返回P地時(shí)的騎車速度為   千米/時(shí);

2)求乙從P地到Q地騎車過程中(即線段EF)距P地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)關(guān)系式及自變量x的取值范圍;

3)在乙騎手出發(fā)后,且在甲,乙兩人相遇前,求時(shí)間x(時(shí))的值為多少時(shí),甲,乙兩騎手相距8千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對角線交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊ADCD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).

(1)如圖①,當(dāng)α=90°時(shí),DE,DF,AD之間滿足的數(shù)量關(guān)系是________

(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)?/span>________,請給出證明;

(3)(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,當(dāng)點(diǎn)E落在線段AD的延長線上時(shí),探究DE,DF,AD之間的數(shù)量關(guān)系(直接寫出結(jié)論,不用加以證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ab,c表示交叉的三條公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到這三條公路的距離相等,則可供選擇的站址最多有  

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在冋一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)日的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.

1)根據(jù)圖象信息,當(dāng)t   分鐘時(shí)甲乙兩人相遇,乙的速度為   /分鐘;

2)求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知PA、PB是⊙O的切線,A、B為切點(diǎn),連接AO并延長,交PB的延長線于點(diǎn)C,連接PO,交⊙O于點(diǎn)D.

(1)如圖,若∠AOP=65°,求∠C的大。

(2)如圖,連接BD,若BDAC,求∠C的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣出210件;如果售價(jià)超過50元但不超過80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣1件;如果售價(jià)超過80元后,若再漲價(jià),則每漲1元每月少賣3件.設(shè)每件商品的售價(jià)為x元,每個(gè)月的銷售量為y件.

(1)yx的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

(2)設(shè)每月的銷售利潤為W,請直接寫出Wx的函數(shù)關(guān)系式;

(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案