【題目】如圖,直角坐標(biāo)系中,三角形ABC的頂點都在網(wǎng)格點上,C點的坐標(biāo)為(12.

1)直接寫出點A、B的坐標(biāo).

2)點Pa,b)是△ABC內(nèi)任意一點,把△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A'B'C',點P的對應(yīng)點為P',則點P'的坐標(biāo)是 .

3)求三角形ABC的面積.

【答案】1A21)、B43);(2P'a-2b+1);(35.

【解析】

1)由坐標(biāo)系即可得出答案;

2)根據(jù)平移規(guī)律左減右加,上加下減即可解決問題;

3)割補法求解即可.

解:(1)由圖可知點A坐標(biāo)為(21)、點B坐標(biāo)為(4,3),

2)根據(jù)平移的規(guī)律可知點P'的坐標(biāo)是(a-2,b+1);

3)三角形ABC的面積為:×13×4×1×3×1×35,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018429日在瑞安外灘舉行了“微馬”活動,本次活動分“微馬組,體驗跑組,歡樂家庭跑組”三種賽程,其中“歡樂家庭跑組”蔡塞家庭只能以“二大一小”或“一大一小”的形式參加,參賽人數(shù)共100.

1)若參加“歡樂家庭跑組”的大人人數(shù)是小孩人數(shù)的1.5倍,問:“二大一小”和“一大一小”的組數(shù)分別有幾組?

2)若“二大一小”和“一大一小”的組數(shù)不相同且相差不超過5組,則本次比賽中參加 “歡樂家庭跑組”共有 組(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,O是等邊△ABC內(nèi)一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.求:

旋轉(zhuǎn)角的度數(shù);

線段OD的長;

③∠BDC的度數(shù).

(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點,連接OA、OB、OC,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2m2)與y軸的交點為A,與x軸的交點分別為Bx1,0),Cx2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點Et,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q

1)求拋物線的解析式;

2)當(dāng)0t≤8時,求△APC面積的最大值;

3)當(dāng)t2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育文化用品商店購進籃球和排球共20個,進價和售價如下表,全部銷售完后共獲利潤260元.

籃球

排球

進價(元/個)

80

50

售價(元/個)

95

60

求:(1)購進籃球和排球各多少個?

(2)銷售6個排球的利潤與銷售幾個籃球的利潤相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,點DE分別在AB、AC上,要得到ABE≌△ACD,可添加條件(

A. A=AB. ABC=ACBC. BE=CDD. AD=AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個零件的形狀如圖所示,按規(guī)定∠A應(yīng)等于90°,∠B、∠D應(yīng)分別是20°30°.

1)李叔叔量得∠BCD=142°,根據(jù)李叔叔量得的結(jié)果,你能斷定這個零件是否合格?請解釋你的結(jié)論.

2)你知道∠B、∠D、∠BCD三角之間有何關(guān)系嗎?請寫出你的結(jié)論(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊平行于坐標(biāo)軸,對角線BD經(jīng)過坐標(biāo)原點,點C在反比例函數(shù)y=的圖象上.若點A的坐標(biāo)為(﹣2,﹣2),則k=( 。

A. 2 B. 4 C. 8 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明

查看答案和解析>>

同步練習(xí)冊答案