如圖,在矩形ABCD中,E、F分別是邊AD、BC的中點(diǎn),點(diǎn)G、H在DC邊上,點(diǎn)M、N在AB邊上,且GH=
1
2
DC,MN=
1
3
AB.若AB=10,BC=12,則圖中陰影部分面積和為______.
連接EF,∵E、F分別是矩形ABCD的邊AD、BC的中點(diǎn),
∴AE=DE=6,EFABCD,
∴△OEF△ONM,
∵M(jìn)N=
1
3
AB,
∴△OMN與△OEF的高之比是1:3,
S△OMN+S△OEF=
1
2
×10×
1
3
×
1
4
×6+
1
2
×10×
3
4
×6,
同理:S△REF+S△RGH=
1
2
×10×
1
3
×2×6+
1
2
×
1
2
×10×
1
3
×6,
∴S△OMN+S△REF+S△OEF+S△RGH=50.
故答案為:50.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,以矩形ABCD的頂點(diǎn)A為原點(diǎn),AD所在的直線為x軸,AB所在的直線為y軸,建立平面直角坐標(biāo)系.點(diǎn)D的坐標(biāo)為(8,0),點(diǎn)B的坐標(biāo)為(0,6),點(diǎn)F在對角線AC上運(yùn)動(點(diǎn)F不與點(diǎn)A、C重合),過點(diǎn)F分別作x軸、y軸的垂線,垂足為G、E.設(shè)四邊形BCFE的面積為S1,四邊形CDGF的面積為S2,△AFG的面積為S3
(1)試判斷S1,S2的關(guān)系,并加以證明;
(2)當(dāng)S3:S2=1:3時(shí),求點(diǎn)F的坐標(biāo);
(3)如圖2,在(2)的條件下,把△AEF沿對角線AC所在直線平移,得到△A′E′F′,且A′,F(xiàn)′兩點(diǎn)始終在直線AC上,是否存在這樣的點(diǎn)E′,使點(diǎn)E′到x軸的距離與到y(tǒng)軸的距離比是5:4?若存在,請求出點(diǎn)E′的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,有一塊長為m2+m,寬為2m的矩形鐵皮,將其四個角分別剪去一個邊長為
m-1
2
的正方形,剩余的部分可制成一個無蓋的長方體鐵皮盒(焊接處損失忽略不計(jì)),求這個鐵皮盒的容積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:已知矩形ABCD的對角線AC、BD相交于O,∠AOB=2∠BOC,那么∠CBO=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形是由六個正方形組成,其中最小的正方形的面積為1,則此矩形的長為______,寬為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

矩形紙ABCD的兩條對角線相交于點(diǎn)O,∠AOB=60°,AB=2,則矩形的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在矩形ABCD中AB=12,AC=20,兩條對角線相交于點(diǎn)O.以O(shè)B、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點(diǎn)A1;再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點(diǎn)O1;再以O(shè)1B1,O1C1為鄰邊作第3個平行四邊形O1B1B2C1;…以此類推.
(1)矩形ABCD的面積為______;
(2)第1個平行四邊行OBB1C的面積為______;
第2個平行四邊形A1B1C1C的面積為______;
(3)第n個平行四邊形的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在矩形ABCD中,E是AD上的一點(diǎn),F(xiàn)是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=3cm,BC=7cm.
(1)求證:△AEF≌△DCE;
(2)請你求出EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=8,BC=6,E、F是AC的三等分點(diǎn).則△BEF的面積為(  )
A.12B.8C.6D.無法計(jì)算

查看答案和解析>>

同步練習(xí)冊答案