【題目】如圖,AB=AC,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,BE與CD相交于點(diǎn)O.

(1)求證:AD=AE;
(2)試猜想:OA與BC的位置關(guān)系,并加以證明.

【答案】
(1)證明:∵CD⊥AB,BE⊥AC,

∴∠ADC=∠AEB=90°,

△ACD和△ABE中,

∴△ACD≌△ABE(AAS),

∴AD=AE


(2)猜想:OA⊥BC.

證明:連接OA、BC,

∵CD⊥AB,BE⊥AC,

∴∠ADC=∠AEB=90°.

在Rt△ADO和Rt△AEO中,

∴Rt△ADO≌Rt△AEO(HL).

∴∠DAO=∠EAO,

又∵AB=AC,

∴OA⊥BC.


【解析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有A,B兩個(gè)黑布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和2.B 布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1,-2和-3.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再?gòu)腂布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)Q的一個(gè)坐標(biāo)為

(1)用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);

(2)求點(diǎn)Q落在拋物線y=x2-2x-1上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】游泳是一項(xiàng)深受青少年喜愛的體育活動(dòng),學(xué)校為了加強(qiáng)學(xué)生的安全意識(shí),組織學(xué)生觀看了紀(jì)實(shí)片孩子,請(qǐng)不要私自下水,并于觀看后在本校的2000名學(xué)生中作了抽樣調(diào)查.請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問(wèn)題:

1)這次抽樣調(diào)查中,共調(diào)查了   名學(xué)生;

2家長(zhǎng)陪同時(shí)會(huì)的學(xué)生所占比例為 %一定不會(huì)的學(xué)生有 人;

3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人一定會(huì)下河游泳?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC,添加下列條件,不能使△ABE≌△ACD的是( )

A.∠B=∠C
B.∠AEB=∠ADC
C.AE=AD
D.BE=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無(wú)月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.

(1)有月租費(fèi)的收費(fèi)方式是(填①或②),月租費(fèi)是元;


(2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請(qǐng)你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗和爸爸一起玩投籃球游戲,兩人商定規(guī)則為:小麗投中1個(gè)得3分,爸爸投中1個(gè)得1分,結(jié)果兩人一共投中了20個(gè),得分剛好相等.小麗投中了_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn):如圖1,在ABC中,∠C=90°,分別以AC,BC為邊向外側(cè)作正方形ACDE和正方形BCFG

1ABCDCF面積的關(guān)系是______________;(請(qǐng)?jiān)跈M線上填寫相等不等

2拓展探究:若∠C≠90°,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)結(jié)合圖2給出證明;若不成立,請(qǐng)說(shuō)明理由;

3解決問(wèn)題:如圖3,在四邊形ABCD中,ACBD,且ACBD的和為10,分別以四邊形ABCD的四條邊為邊向外側(cè)作正方形ABFE、正方形BCHG、正方形CDJI,正方形DALK,運(yùn)用(2)的結(jié)論,圖中陰影部分的面積和是否有最大值?如果有,請(qǐng)求出最大值,如果沒有,請(qǐng)說(shuō)明理由.

1

2

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線yax2經(jīng)過(guò)點(diǎn)(1,1)和(﹣1,n),則n的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):(a+2b)(3ab)(2ab)(a+6b)

查看答案和解析>>

同步練習(xí)冊(cè)答案