問題解決:
如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)如圖2,固定△ABC,將△DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),設(shè)△BDC的面積為S1,△AEC的面積為S2,那么S1與S2的數(shù)量關(guān)系是
 
;

(2)當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)如圖4,∠ABC=60°,點(diǎn)D在其角平分線上,BD=CD=6,DE∥AB交BC于點(diǎn)E,若點(diǎn)F在射線BA上,并且S△DCF=S△BDE,請直接寫出相應(yīng)的BF的長.
考點(diǎn):旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì)
專題:
分析:(1)相等,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC=
1
2
AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點(diǎn)C到AB的距離等于點(diǎn)D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;
(3)過點(diǎn)D作DF1∥BE,求出四邊形BEDF1是菱形,根據(jù)菱形的對邊相等可得BE=DF1,然后根據(jù)等底等高的三角形的面積相等可知點(diǎn)F1為所求的點(diǎn),過點(diǎn)D作DF2⊥BD,求出∠F1DF2=60°,從而得到△DF1F2是等邊三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“邊角邊”證明△CDF1和△CDF2全等,根據(jù)全等三角形的面積相等可得點(diǎn)F2也是所求的點(diǎn),然后在等腰△BDE中求出BE的長,即可得解.
解答:解:(1)∵∠B=30°,∠C=90°,
∴CD=AC=
1
2
AB,
∴BD=AD=AC,
根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S2;
故答案為:相等;
(2)如圖,∵△DEC是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
在△ACN和△DCM中,
∠ACN=∠DCM
∠CMD=∠N=90°
AC=CD
,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S2;

(3)如圖,過點(diǎn)D作DF1∥BE,易求四邊形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此時(shí)S△DCF=S△BDE,
過點(diǎn)D作DF2⊥BD,
∵∠ABC=60°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等邊三角形,
∴DF1=DF2
∵BD=CD,∠ABC=60°,點(diǎn)D是角平分線上一點(diǎn),
∴∠DBC=∠DCB=
1
2
×60°=30°,
∴∠CDF1=180°-30°=150°,
∠CDF2=360°-150°-60°=150°,
∴∠CDF1=∠CDF2,
在△CDF1和△CDF2中,
DF1=DF2
∠CDF1=∠CDF2
CD=CD
,
∴△CDF1≌△CDF2(SAS),
∴點(diǎn)F2也是所求的點(diǎn),
∵∠ABC=60°,點(diǎn)D是角平分線上一點(diǎn),DE∥AB,
∴∠DBC=∠BDE=∠ABD=
1
2
×60°=30°,
又∵BD=6,
∴BE=
1
2
×6÷cos30°=3÷
3
2
=2
3
,
∴BF1=2
3
,BF2=BF1+F1F2=4
3
,
故BF的長為2
3
或4
3
點(diǎn)評:本題考查了全等三角形的判定與性質(zhì),三角形的面積,等邊三角形的判定與性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題的關(guān)鍵,(3)要注意符合條件的點(diǎn)F有兩個(gè).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知直線l:y=-x-1,雙曲線y=
1
x
,在l上取一點(diǎn)A1,過A1作x軸的垂線交雙曲線于點(diǎn)B1,過B1作y軸的垂線交l于點(diǎn)A2,請繼續(xù)操作并探究:過A2作x軸的垂線交雙曲線于點(diǎn)B2,過B2作y軸的垂線交l于點(diǎn)A3,…,這樣依次得到l上的點(diǎn)A1,A2,A3,…,An,….記點(diǎn)An的橫坐標(biāo)為an,若a1=2,則a2=
 
,a2014=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)|-6|+(π-3.14)0-(-
1
3
-1
(2)(-2x32•(-x2)÷[(-x)2]3;
(3)-2a2(12ab+b2)-5ab(a2-ab);
(4)先化簡,再求值:(x-1)(x-2)+x (x-4)-2(x+2)(x-1),其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一次函數(shù)y=kx+b的圖象與y軸交點(diǎn)的縱坐標(biāo)為-2,且與兩坐標(biāo)軸圍成的直角三角形面積為1,試確定此一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一輛小車沿著水平地面上的長直軌道勻速的向右運(yùn)動(dòng),有一臺(tái)散發(fā)出細(xì)光束的激光器裝在小轉(zhuǎn)臺(tái)M上,轉(zhuǎn)臺(tái)到軌道的距離MN=10米.轉(zhuǎn)臺(tái)勻速的轉(zhuǎn)動(dòng),使激光器在水平面內(nèi)掃描.掃描一周的時(shí)間為60秒,光束轉(zhuǎn)動(dòng)的方向?yàn)槟鏁r(shí)針方向.已知當(dāng)光束與MN的夾角為45°時(shí),光束正好射到小車上,如果再經(jīng)過2.5秒,光束又射到小車上,求小車的速度?(
3
≈1.73,結(jié)果保留兩位有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在長方形ABCD中,將△ABC沿AC對折至△AEC位置,CE與AD交于點(diǎn)F.
(1)試說明:AF=FC;
(2)如果AB=3,BC=4,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,為測得某一湖泊的寬度,在A處的正上方G處有一架飛行的飛機(jī),此時(shí)正好測得湖泊東岸的點(diǎn)C處的俯角為30°,湖泊西岸的點(diǎn)B處的俯角為60°,此時(shí)飛機(jī)離地面的高度為900米,則湖泊的寬度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(x+3)•(x-3)-(2x-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算
(1)
38
+
0
-
1
4
;   
(2)2
2
-(
32
+5
2
)
;
(3)2
3
+
5
2
-10
0.04
(精確到0.01)(注:
3
≈1.732,
5
≈2.236
);
(4)
5
(
5
+3)

查看答案和解析>>

同步練習(xí)冊答案