【題目】如圖所示,△ABC中,DE是BC的垂直平分線,DE交AC于點(diǎn)E,連接BE,若BE=13,BC=10,則sinC=

【答案】
【解析】解:∵DE是BC的垂直平分線, ∴CE=BE=13,CD=BD=5,∠CDE=90°,
∴DE= =12,
∴sinC= = ,
所以答案是:
【考點(diǎn)精析】本題主要考查了線段垂直平分線的性質(zhì)和解直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2 , 以直線l1上的點(diǎn)A為圓心、適當(dāng)長為半徑畫弧,分別交直線l1、l2于點(diǎn)B、C,連接AC、BC.若∠ABC=67°,則∠1=(
A.23°
B.46°
C.67°
D.78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.隨機(jī)拋擲一枚硬幣,反面一定朝上
B.數(shù)據(jù)3,3,5,5,8的眾數(shù)是8
C.某商場抽獎(jiǎng)活動(dòng)獲獎(jiǎng)的概率為 ,說明毎買50張獎(jiǎng)券中一定有一張中獎(jiǎng)
D.想要了解廣安市民對(duì)“全面二孩”政策的看法,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用4500元購進(jìn)一批襯衫,很快售完,服裝店老板又用2100元購進(jìn)第二批該款式的襯衫,進(jìn)貨量是第一次的一半,但進(jìn)價(jià)每件比第一批降低了10元,求這兩次各購進(jìn)這種襯衫多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)完“利用三角函數(shù)測高”這節(jié)內(nèi)容之后,某興趣小組開展了測量學(xué)校旗桿高度的實(shí)踐活動(dòng),如圖,在測點(diǎn)A處安置測傾器,量出高度AB=1.5m,測得旗桿頂端D的仰角∠DBE=32°,量出測點(diǎn)A到旗桿底部C的水平距離AC=20m,根據(jù)測量數(shù)據(jù),求旗桿CD的高度.(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)相交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為4.

(1)求點(diǎn)A的坐標(biāo)及一次函數(shù)的解析式;
(2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B、C,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形的外接圓半徑為5cm,內(nèi)切圓半徑為1cm,則此三角形的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長線于點(diǎn)F.

(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)

(1)當(dāng)∠BAC=60°時(shí),將BP旋轉(zhuǎn)到圖2位置,點(diǎn)D在射線BP上.若∠CDP=120°,則∠ACD__∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是_____;

(2)當(dāng)∠BAC=120°時(shí),將BP旋轉(zhuǎn)到圖3位置,點(diǎn)D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;

(3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當(dāng)30°<α<180°時(shí),點(diǎn)D是直線BP上一點(diǎn)(點(diǎn)P不在線段BD上),若∠CDP=120°,請(qǐng)直接寫出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).

查看答案和解析>>

同步練習(xí)冊答案