【題目】如圖,D為等腰Rt△ABC的斜邊AB的中點(diǎn),E為BC邊上一點(diǎn),連接ED并延長(zhǎng)交CA的延長(zhǎng)線(xiàn)于點(diǎn)F,過(guò)D作DH⊥EF交AC于G、交BC的延長(zhǎng)線(xiàn)于H,則以下結(jié)論:①DE=DG;②BE=CG;③DF=DB;(④BH=CF.其中正確的是____
【答案】①②③④
【解析】
連接CD.欲證線(xiàn)段相等,就證它們所在的三角形全等.證明△DBE≌△DCG,△DCH≌△DAF
根據(jù)已知條件,
∵△ABC是等腰直角三角形,CD是中線(xiàn)。
∴BD=DC、∠B=∠DCA=45°.
又∵∠BDC=∠EDH=90°,即
∠BDE+∠EDC=∠EDC+∠CDH
∴∠BDE=∠CDH
∴△DBE≌△DCG(ASA)
∴DE=DG BE=CG
同理可證:△DCH≌△DAF,可得:DF=DH;AF= CH
∵BC=AC, CH=AF
∴BH=CF
故答案為①②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列推理證明.
已知:如圖,AD∥EF,∠1=∠2.
求證:AB∥DG.
證明:∵AD∥EF(________),
∴∠1=∠(_____)(________________)
∵∠1=∠2(已知),
∴∠________=∠2(________________________).
∴AB∥DG(______________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角形紙片的兩直角邊長(zhǎng)分別為6.8,按如圖那樣折疊,使點(diǎn)A與點(diǎn)B重合,折痕為DE,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)三次到某超市購(gòu)買(mǎi)A、B兩種商品,其中僅有一次是有折扣的,購(gòu)買(mǎi)數(shù)量及消費(fèi)金額如下表:
類(lèi)別 次數(shù) | 購(gòu)買(mǎi)A商品數(shù)量(件) | 購(gòu)買(mǎi)B商品數(shù)量(件) | 消費(fèi)金額(元) |
第一次 | 4 | 5 | 320 |
第二次 | 2 | 6 | 300 |
第三次 | 5 | 7 | 258 |
解答下列問(wèn)題:
(1)第 次購(gòu)買(mǎi)有折扣;
(2)求A、B兩種商品的原價(jià);
(3)若購(gòu)買(mǎi)A、B兩種商品的折扣數(shù)相同,求折扣數(shù);
(4)小明同學(xué)再次購(gòu)買(mǎi)A、B兩種商品共10件,在(3)中折扣數(shù)的前提下,消費(fèi)金額不超過(guò)200元,求至少購(gòu)買(mǎi)A商品多少件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)計(jì)算技術(shù)和無(wú)線(xiàn)網(wǎng)絡(luò)的快速發(fā)展,移動(dòng)學(xué)習(xí)方式越來(lái)越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對(duì)其家庭中擁有的移動(dòng)設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值為 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺(tái)移動(dòng)設(shè)備的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題提出):分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b
(問(wèn)題探究):某數(shù)學(xué)“探究學(xué)習(xí)”小組對(duì)以上因式分解題目進(jìn)行了如下探究:
探究1:分解因式:(1)2x2+2xy﹣3x﹣3y
該多項(xiàng)式不能直接使用提取公因式法,公式法進(jìn)行因式分解.于是仔細(xì)觀察多項(xiàng)式的特點(diǎn).甲發(fā)現(xiàn)該多項(xiàng)式前兩項(xiàng)有公因式2x,后兩項(xiàng)有公因式﹣3,分別把它們提出來(lái),剩下的是相同因式(x+y),可以繼續(xù)用提公因式法分解.
解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)
另:乙發(fā)現(xiàn)該多項(xiàng)式的第二項(xiàng)和第四項(xiàng)含有公因式y,第一項(xiàng)和第三項(xiàng)含有公因式x,把y、x提出來(lái),剩下的是相同因式(2x﹣3),可以繼續(xù)用提公因式法分解.
解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)
探究2:分解因式:(2)a2﹣b2+4a﹣4b
該多項(xiàng)式亦不能直接使用提取公因式法,公式法進(jìn)行因式分解,于是若將此題按探究1的方法分組,將含有a的項(xiàng)分在一組即a2+4a=a(a+4),含有b的項(xiàng)一組即﹣b2﹣4b=﹣b(b+4),但發(fā)現(xiàn)a(a+4)與﹣b(b+4)再?zèng)]有公因式可提,無(wú)法再分解下去.于是再仔細(xì)觀察發(fā)現(xiàn),若先將a2﹣b2看作一組應(yīng)用平方差公式,其余兩項(xiàng)看作一組,提出公因式4,則可繼續(xù)再提出因式,從而達(dá)到分解因式的目的.
解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)
(方法總結(jié)):對(duì)不能直接使用提取公因式法,公式法進(jìn)行分解因式的多項(xiàng)式,我們可考慮把被分解的多項(xiàng)式分成若干組,分別按“基本方法”即提取公因式法和運(yùn)用公式法進(jìn)行分解,然后,綜合起來(lái),再?gòu)目傮w上按“基本方法”繼續(xù)進(jìn)行分解,直到分解出最后結(jié)果.這種分解因式的方法叫做分組分解法.
分組分解法并不是一種獨(dú)立的因式分解的方法,而是通過(guò)對(duì)多項(xiàng)式進(jìn)行適當(dāng)?shù)姆纸M,把多項(xiàng)式轉(zhuǎn)化為可以應(yīng)用“基本方法”分解的結(jié)構(gòu)形式,使之具有公因式,或者符合公式的特點(diǎn)等,從而達(dá)到可以利用“基本方法”進(jìn)行分解因式的目的.
(學(xué)以致用):嘗試運(yùn)用分組分解法解答下列問(wèn)題:
(1)分解因式:
(2)分解因式:
(拓展提升):
(3)嘗試運(yùn)用以上思路分解因式:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】潼南綠色無(wú)公害蔬菜基地有甲、乙兩種植戶(hù),他們種植了A、B兩類(lèi)蔬菜,兩種植戶(hù)種植的兩類(lèi)蔬菜的種植面積與總收入如下表:
種植戶(hù) | 種植A類(lèi)蔬菜面積 (單位:畝) | 種植B類(lèi)蔬菜面積 (單位:畝) | 總收入 (單位:元) |
甲 | 3 | 1 | 12500 |
乙 | 2 | 3 | 16500 |
說(shuō)明:不同種植戶(hù)種植的同類(lèi)蔬菜每畝平均收入相等.
(1)求A、B兩類(lèi)蔬菜每畝平均收入各是多少元?
(2)某種植戶(hù)準(zhǔn)備租20畝地用來(lái)種植A、B兩類(lèi)蔬菜,為了使總收入不低于63000元,且種植A類(lèi)蔬菜的面積多于種植B類(lèi)蔬菜的面積(兩類(lèi)蔬菜的種植面積均為整數(shù)),求該種植戶(hù)所有租地方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是AB中點(diǎn),E是AC中點(diǎn),F是BC中點(diǎn),請(qǐng)?zhí)羁眨?/span>
(1)四邊形BDEF是 四邊形;
(2)若四邊形BDEF是菱形,則△ABC滿(mǎn)足的條件是 .
(3)若四邊形BDEF是矩形,則△ABC滿(mǎn)足的條件是 .
(4)若四邊形BDEF是正方形,則△ABC滿(mǎn)足的條件是 .
并就(2)、(3)、(4)中選取一個(gè)進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知2輛A型車(chē)和1輛B型車(chē)載滿(mǎn)貨物一次可運(yùn)貨10噸.用1輛A型車(chē)和2輛B型車(chē)載滿(mǎn)貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車(chē)a輛和B型車(chē)b輛,一次運(yùn)完,且每輛車(chē)都滿(mǎn)載貨物.根據(jù)以上信息解答下列問(wèn)題:
(1)1輛A型車(chē)和1輛B型車(chē)載滿(mǎn)貨物一次分別可運(yùn)貨物多少?lài)崳?/span>
(2)請(qǐng)幫助物流公司設(shè)計(jì)租車(chē)方案
(3)若A型車(chē)每輛車(chē)租金每次100元,B型車(chē)每輛車(chē)租金每次120元.請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少的租車(chē)費(fèi).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com