【題目】某校測(cè)量了九年級(jí)(1)班學(xué)生的身高(精確到1cm),按10cm為一段進(jìn)行分組,得到如下頻數(shù)分布直方圖如圖,則下列說(shuō)法不正確的是( )
A. 該班人數(shù)最多的身高段的學(xué)生數(shù)為20人
B. 該班身高低于160.5 cm的學(xué)生數(shù)為20人
C. 該班身高最高段的學(xué)生數(shù)為20人
D. 該班身高最高段的學(xué)生數(shù)為7人
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程x2﹣(2m﹣1)x+m2﹣1=0的兩實(shí)數(shù)根為x1 , x2 , 且x12+x22=3,則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點(diǎn)在BC上,且四邊形AEFD是平行四邊形.
(1)AD與BC有何等量關(guān)系?請(qǐng)說(shuō)明理由;
(2)當(dāng)AB=DC時(shí),求證:四邊形AEFD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中的虛線網(wǎng)格是等邊三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為1的等邊三角形.
(1)邊長(zhǎng)為1的等邊三角形的高=____;
(2)圖①中的ABCD的對(duì)角線AC的長(zhǎng)=____;
(3)圖②中的四邊形EFGH的面積=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)從A,B向甲、乙兩地運(yùn)送蔬菜,A,B兩個(gè)蔬菜市場(chǎng)各有蔬菜14噸,其中甲地需要蔬菜15噸,乙地需要蔬菜13噸,從A到甲地運(yùn)費(fèi)50元/噸,到乙地30元/噸;從B地到甲運(yùn)費(fèi)60元/噸,到乙地45元/噸.
(1)設(shè)A地到甲地運(yùn)送蔬菜x噸,請(qǐng)完成下表:
運(yùn)往甲地(單位:噸) | 運(yùn)往乙地(單位:噸) | |
A | x | |
B |
(2)設(shè)總運(yùn)費(fèi)為W元,請(qǐng)寫(xiě)出W與x的函數(shù)關(guān)系式
(3)怎樣調(diào)運(yùn)蔬菜才能使運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年,某市政府的一項(xiàng)實(shí)事工程就是由政府投入1 000萬(wàn)元資金,對(duì)城區(qū)4萬(wàn)戶(hù)家庭的老式水龍頭和13升抽水馬桶進(jìn)行免費(fèi)改造,某社區(qū)為配合政府完成該項(xiàng)工作,對(duì)社區(qū)內(nèi)1 200戶(hù)家庭中的120戶(hù)進(jìn)行了隨機(jī)抽樣調(diào)查,并匯總成下表:
改造情況 | 均不改造 | ||||||
改造水龍頭 | 改造馬桶 | ||||||
1個(gè) | 2個(gè) | 3個(gè) | 4個(gè) | 1個(gè) | 2個(gè) | ||
戶(hù)數(shù) | 20 | 31 | 28 | 21 | 12 | 69 | 2 |
(1)試估計(jì)該社區(qū)需要對(duì)水龍頭或馬桶進(jìn)行改造的家庭共有___戶(hù);
(2)改造后,一個(gè)水龍頭一年大概可節(jié)約5噸水,一個(gè)馬桶一年大約可節(jié)約15噸水,試估計(jì)該社區(qū)一年共可節(jié)約多少?lài)嵥?/span>
(3)在抽樣的120戶(hù)家庭中,既要改造水龍頭又要改造馬桶的家庭共有多少戶(hù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填寫(xiě)推理理由
如圖,已知AD⊥BC于D,EF⊥BC于F,AD平分∠BAC.將∠E=∠1的過(guò)程填寫(xiě)完整.
解:解:∵AD⊥BC, EF⊥BC( 已知 )
∴∠ADC=∠EFC= 90°( 垂直的意義 )
∴AD//EF
∴∠1= ()
∠E= ()
又∵AD平分∠BAC(已知 )
∴ =
∴∠1=∠E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),B在x軸上,四邊形OACB為平行四邊形,且∠AOB=60°,反比例函數(shù)(k>0)在第一象限內(nèi)過(guò)點(diǎn)A,且與BC交于點(diǎn)F.(1)若OA=10,求反比例函數(shù)的解析式;
(2)若F為BC的中點(diǎn),且S△AOF=24,求OA長(zhǎng)及點(diǎn)C坐標(biāo);
(3)在(2)的條件下,過(guò)點(diǎn)F作EF∥OB交OA于點(diǎn)E(如圖2),若點(diǎn)P是直線EF上一個(gè)動(dòng)點(diǎn),連結(jié),PA,PO,問(wèn)是否存在點(diǎn)P,使得以P,A,O三點(diǎn)構(gòu)成的三角形是直角三角形?若存在,請(qǐng)指出這樣的P點(diǎn)有幾個(gè),并直接寫(xiě)出其中二個(gè)P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明了理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,1925年數(shù)學(xué)家莫倫發(fā)現(xiàn)的世界上第一個(gè)完美長(zhǎng)方形,它恰能被分割成10個(gè)大小不同的正方形.若標(biāo)注①、②的正方形邊長(zhǎng)分別為5和6,請(qǐng)你直接寫(xiě)出以下數(shù)據(jù):
(1)第6個(gè)正方形的邊長(zhǎng)= ;
(2)第8個(gè)正方形的邊長(zhǎng)= ;
(3)整個(gè)長(zhǎng)方形的面積= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com