【題目】如圖,平行于y軸的直尺(一部分)與雙曲線x0)交于點A、C,與x軸交于點B、D.點AB的刻度分別為5、2cm),直尺的寬度為2cm,OB2cm.(注:平面直角坐標(biāo)系內(nèi)一個單位長度為1厘米)

1A點坐標(biāo)為   

2)求的值;

3)若經(jīng)過AC兩點的直線關(guān)系式為,當(dāng)x0時,請直接寫出不等式的解集.

【答案】1;(26;(3

【解析】

1)由OBAB的長,及A位于第一象限,確定出A的坐標(biāo),

2)將A坐標(biāo)代入反比例解析式中求出k的值;

3)由OB+BD求出OD的長,即為C的橫坐標(biāo),代入反比例解析式中求出C的縱坐標(biāo),把的坐標(biāo)代入直線AC解析式,即可確定出直線AC的解析式.利用圖像寫出不等式的解集.

解:(1)由圖像可得:

A2,3).

故答案為:

2)將A點坐標(biāo)代入反比例函數(shù)解析式中,

得:   

 k2×36;

3)由OB+BD=4cm,得到C橫坐標(biāo)為4,

x=4代入反比例解析式得:

C點坐標(biāo)為

設(shè)經(jīng)過A、C兩點的直線解析式,

A2,3)、C代入, 得:

解得:

∴經(jīng)過A、C兩點的直線解析式

根據(jù)圖像得:的解集是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,正方形ABCD的邊長為4,取AB邊上的中點E,連接CE,過點BBFCE于點F,連接DF.過點AAHDF于點H,交CE于點M,交BC于點N,則MN=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(8)班的5名同學(xué)聯(lián)合設(shè)計了一份調(diào)查問卷,對該校部分學(xué)生進行了隨機調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設(shè)置選項,要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:

1)本次接受調(diào)查的總?cè)藬?shù)是 人,并把條形統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖中,步行的人數(shù)所占的百分比是 其他方式所在扇形的圓心角度數(shù)是 ;

3)已知這5名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報調(diào)查結(jié)果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖②,在中,AC8cm,BC6cm,點P從點A出發(fā),沿斜邊AB向點B勻速運動,速度為,過點PPQABAC于點Q,以PQ為一邊作正方形PQMN,使點N落在射線PB上,連接CM,設(shè)CQ=y,運動時間為xs)(0x),yx函數(shù)關(guān)系如圖①所示:

1)求yx函數(shù)關(guān)系式及a的值;

2)設(shè)的面積為S,求S的最大值;

3)若是等腰三角形,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點.

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫出x的取值范圍;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)

如圖①,在ABC中,ABAC,點D、E分別為線段AB、AC上的點,且DEBC.將ADE繞點A旋轉(zhuǎn)一定的角度后得到ADE′,如圖②.

1)求證:ABD≌△ACE

(深入研究)

如圖③,,,

2)若點D在線段BE上,求BCE的面積.

3)若點B、DE不在同一直線上,且點內(nèi),順次連結(jié)C、B、D、E四點,則四邊形CBDE的面積是否改變,若改變,請求出改變后的面積;若不變,請說明理由.

(拓展延伸)

4)如圖④,在四邊形ABCD中,ABCD,∠D=∠C≠90°.請用沒有刻度的直尺和圓規(guī)畫出滿足下列條件的四邊形ABCD

條件1:利用一次旋轉(zhuǎn)變換改變線段AB的位置,得到對應(yīng)線段AB

條件2:連結(jié)AD、B′C,使得四邊形ABCD的面積與四邊形ABCD的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為貫徹落實《中華人民共和國河道管理條例》,對轄區(qū)內(nèi)河道阻水障礙物進行清理.甲、乙兩個工程隊共同承包此項清理工程,甲隊單獨施工完成此項工程比乙隊單獨施工完成此項工程多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.

1)甲、乙兩隊單獨完成此項工程各需多少天?

2)若由甲隊先施工天,再由甲、乙兩隊共同施工天,正好完成該工程,請直接寫出之間的函數(shù)關(guān)系式;

3)在(2)的條件下,若每天需支付甲隊費用1000元,每天需支付乙隊費用2000元,且完成工作總天數(shù)不超過24天,則如何安排甲隊先施工天數(shù),使總施工費用最少,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形的各邊上順次截取,若四邊形面積是10,則正方形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于 x 的一元二次方程ax2 8x 6 0

1)若方程有實數(shù)根,求 a的取值范圍;

2)若 a為正整數(shù),且方程的兩個根也是整數(shù),求 a的值.

查看答案和解析>>

同步練習(xí)冊答案