【題目】如圖,已知一次函數(shù)y= kx +b的圖象交反比例函數(shù)的圖象于點A(2,-4)和點B(h,-2),交x軸于點C

(1)求這兩個函數(shù)的解析式;

(2)連接QA、OB.求△AOB的面積;

(3)請直接寫出不等式的解集.

【答案】1)反比例函數(shù)是:,一次函數(shù)是:;(26;(3

【解析】

1)先把點A的坐標代入反比例函數(shù)表達式,從而的反比例函數(shù)解析式,再求點B的坐標,然后代入反比例函數(shù)解析式求出點B的坐標,再利用待定系數(shù)法求解即可;

2)根據(jù)割補法計算即可;

3)觀察函數(shù)圖象即可求出不等式的解集.

1)把A24)的坐標代入得:m2×(-48,

∴反比例函數(shù)的表達式是

B(h,-2)的坐標代入2,

解得:h4,

B點坐標為(4,2),

A24)、B42)的坐標代入ykxb,

解得,

∴一次函數(shù)表達式為yx6;

2)當y0時,x066,

OC6,

∴△AOB的面積=SAOC-SBOC= ×6×4×6×26;

3)由圖象知,一次函數(shù)值大于反比例函數(shù)值的x的范圍為0x2x4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為E在正方形外,DEDC,過DDHAEH,直線DH,EC交于點M,直線CE交直線AD于點P,則下列結(jié)論正確的是____________

①∠DAE=∠DEA;②∠DMC45°;③;④若MH2,則SCMD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某飾品店老板去批發(fā)市場購買新款手鏈,第一次購手鏈共用1000元,將該手鏈以每條定價28元銷售,并很快售完,所得利潤率高于30%.由于該手鏈深得年輕人喜愛,十分暢銷,第二次去購進手鏈時,每條的批發(fā)價已比第一次高5元,共用去了1500元,所購數(shù)量比第一次多10條.當這批手鏈以每條定價32元售出80%時,出現(xiàn)滯銷,便以5折價格售完剩余的手鏈.現(xiàn)假設第一次購進手鏈的批發(fā)價為x/條.

1)用含x的代數(shù)式表示:第一次購進手鏈的數(shù)量為 條;

2)求x的值;

3)不考慮其他因素情況下,試問該老板第二次售手鏈是賠錢了,還是賺錢了?若賠錢,賠多少?若賺錢,賺多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線的頂點為,經(jīng)過拋物線上的兩點的直線交拋物線的對稱軸于點

1)求拋物線的解析式和直線的解析式.

2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.

3)若點在拋物線上,點軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在線段上任取一點,將線段逆時針旋轉(zhuǎn)得到線段,將線段順時針旋轉(zhuǎn)得到線段,連接,的中點,連接于點,連接于點.直線分別交,兩點,有下列結(jié)論:①;②四邊形為平行四邊形;③;④.其中正確的結(jié)論是(

A.①③④B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在光明小區(qū)隨機抽取了若干名居民開展主題為打贏藍天保衛(wèi)戰(zhàn)的環(huán)保知識有獎問答活動,并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6分)

請根據(jù)圖中信息,解答下列問題:

(1)本次調(diào)查一共抽取了   名居民;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)社區(qū)決定對該小區(qū)500名居民開展這項有獎問答活動,得10分者設為一等獎,請你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計需準備多少份一等獎獎品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.

(1)求該店有客房多少間?房客多少人?

(2)假設店主李三公將客房進行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1=2,AD=AE,∠B=ACE,且BC、D三點在一條直線上,

1)試說明△ABD與△ACE全等的理由;

2)如果∠B=60°,試說明線段AC、CE、CD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習冊答案