如圖,∠AOB=70°,∠COD=80°,求∠AOD-∠BOC的度數(shù).
科目:初中數(shù)學(xué) 來源:2014湘教版七年級上冊(專題訓(xùn)練 狀元筆記)數(shù)學(xué):第四章 圖形的認(rèn)識 幾何圖形 線段、射線、直線 湘教版 題型:044
如圖,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 人教課標(biāo)七年級版 2009-2010學(xué)年 第19-26期 總第175-182期 人教課標(biāo)版 題型:044
如圖,∠
AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大。查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014屆江蘇省泰興市七年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,已知:∠AOB=70°,∠BOC=30°,OM平分∠AOC,則∠BOM=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【考點】切線的性質(zhì);圓周角定理.
【專題】計算題.
【分析】連接OA,OB,在優(yōu)弧AB上任取一點D(不與A、B重合),連接BD,AD,如圖所示,由PA與PB都為圓O的切線,利用切線的性質(zhì)得到OA與AP垂直,OB與BP垂直,在四邊形APOB中,根據(jù)四邊形的內(nèi)角和求出∠AOB的度數(shù),再利用同弧所對的圓周角等于所對圓心角的一半求出∠ADB的度數(shù),再根據(jù)圓內(nèi)接四邊形的對角互補即可求出∠ACB的度數(shù).
【解答】連接OA,OB,在優(yōu)弧AB上任取一點D(不與A、B重合),
連接BD,AD,如圖所示:
∵PA、PB是⊙O的切線,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圓周角∠ADB與圓心角∠AOB都對弧AB,
∴∠ADB=∠AOB=70°,
又∵四邊形ACBD為圓內(nèi)接四邊形,
∴∠ADB+∠ACB=180°,
則∠ACB=110°.
故選B。
【點評】此題考查了切線的性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com