如圖是一副三角板重疊而成的圖形,則∠AOD+∠COB=________.

答案:
解析:

  答案:

  精析:從圖中知,∠AOD=∠AOB+∠BOD,因此∠AOD+∠COB=∠AOB+∠BOD+∠COB=∠AOB+∠COD=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,是一副三角板重疊而成的圖形,則∠AOD+∠BOC=
180
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、如圖①是一副三角板,其中∠B=∠E=90°,∠A=∠C=45°,∠F=30°,AC=EF=2.把兩個三角板ABC和DEF疊放在一起(如圖②),且使三角板DEF的直角頂點(diǎn)E與三角板ABC的斜邊中點(diǎn)O重合,DE和OC重合.現(xiàn)將三角板DEF繞O點(diǎn)順時針旋轉(zhuǎn)(旋轉(zhuǎn)角α滿足條件:0°<α<90°),四邊形BGEH是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖③).
(1)當(dāng)旋轉(zhuǎn)角度為45°時,EG和AB之間的數(shù)量關(guān)系為
AB=2EG

(2)當(dāng)DF經(jīng)過三角板ABC的頂點(diǎn)B,求旋轉(zhuǎn)角α的度數(shù).
(3)在三角板DEF繞O點(diǎn)旋轉(zhuǎn)的過程中,在DF上是否存在一點(diǎn)P,使得∠APC=90°,若存在,請利用直尺和圓規(guī)在DF上畫出這個點(diǎn),并說明理由,若不存在,請說明理由.
(4)在射線EF上取一點(diǎn)M,過M作DF的平行線交射線ED于點(diǎn)N(如圖④),若直線MN上始終存在兩個點(diǎn)P、Q,使得∠APC=∠AQC=90°,求EM的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①是一副三角板,其中∠B=∠E=90°,∠A=∠C=45°,∠F=30°,AC=EF=2.把兩個三角板ABC和DEF疊放在一起(如圖②),且使三角板DEF的直角頂點(diǎn)E與三角板ABC的斜邊中點(diǎn)O重合,DE和OC重合.現(xiàn)將三角板DEF繞O點(diǎn)順時針旋轉(zhuǎn)(旋轉(zhuǎn)角α滿足條件:0°<α<90°),四邊形BGEH是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖③).
(1)當(dāng)旋轉(zhuǎn)角度為45°時,EG和AB之間的數(shù)量關(guān)系為______.
(2)當(dāng)DF經(jīng)過三角板ABC的頂點(diǎn)B,求旋轉(zhuǎn)角α的度數(shù).
(3)在三角板DEF繞O點(diǎn)旋轉(zhuǎn)的過程中,在DF上是否存在一點(diǎn)P,使得∠APC=90°,若存在,請利用直尺和圓規(guī)在DF上畫出這個點(diǎn),并說明理由,若不存在,請說明理由.
(4)在射線EF上取一點(diǎn)M,過M作DF的平行線交射線ED于點(diǎn)N(如圖④),若直線MN上始終存在兩個點(diǎn)P、Q,使得∠APC=∠AQC=90°,求EM的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省南京市鼓樓區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖①是一副三角板,其中∠B=∠E=90°,∠A=∠C=45°,∠F=30°,AC=EF=2.把兩個三角板ABC和DEF疊放在一起(如圖②),且使三角板DEF的直角頂點(diǎn)E與三角板ABC的斜邊中點(diǎn)O重合,DE和OC重合.現(xiàn)將三角板DEF繞O點(diǎn)順時針旋轉(zhuǎn)(旋轉(zhuǎn)角α滿足條件:0°<α<90°),四邊形BGEH是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖③).
(1)當(dāng)旋轉(zhuǎn)角度為45°時,EG和AB之間的數(shù)量關(guān)系為______.
(2)當(dāng)DF經(jīng)過三角板ABC的頂點(diǎn)B,求旋轉(zhuǎn)角α的度數(shù).
(3)在三角板DEF繞O點(diǎn)旋轉(zhuǎn)的過程中,在DF上是否存在一點(diǎn)P,使得∠APC=90°,若存在,請利用直尺和圓規(guī)在DF上畫出這個點(diǎn),并說明理由,若不存在,請說明理由.
(4)在射線EF上取一點(diǎn)M,過M作DF的平行線交射線ED于點(diǎn)N(如圖④),若直線MN上始終存在兩個點(diǎn)P、Q,使得∠APC=∠AQC=90°,求EM的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案