【題目】如圖,在平面直角坐標系上,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點B(1,3),將△ABC以點B為旋轉中心順時針方向旋轉90°得到△DBE,恰好有一反比例函數y= 圖像恰好過點D,則k的值為( )
A.6
B.﹣6
C.9
D.﹣9
【答案】B
【解析】解:如圖,∵△ABC以點B為旋轉中心順時針方向旋轉90°得到△DBE,點B(1,3),AB∥y軸,
∴BD=BA=3,∠DBA=90°,
∴BD∥x軸,
∴DF=3﹣1=2,
∴D(﹣2,3).
∵反比例函數y= 圖像恰好過點D,
∴3= ,解得k=﹣6.
故選B.
【考點精析】認真審題,首先需要了解反比例函數的圖象(反比例函數的圖像屬于雙曲線.反比例函數的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點),還要掌握比例系數k的幾何意義(幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y= x2+bx+c(b,c為常數)的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,﹣1),C的坐標為(4,3),直角頂點B在第四象限.
(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數表達式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標;
(ii)取BC的中點N,連接NP,BQ.試探究 是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC繞點A順時針旋轉90°后,得到△A1B1C1(如圖所示),則線段AB所掃過的面積為( )
A.5
B. πcm2
C. πcm2
D.5πcm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小強從熱氣球上測量一棟高樓頂部的傾角為30°,測量這棟高樓底部的俯角為60°,熱氣球與高樓的水平距離為45米,則這棟高樓高為多少(單位:米)( )
A.15
B.30
C.45
D.60
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC和BD相交于點O,過O作EF⊥AC,交AD于E,交BC于F,連接AF、CE.
(1)求證:四邊形AECF是菱形
(2)若AB=3,BC=4,則菱形AECF的周長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市居民使用自來水按如下標準收費(水費按月繳納):
(1)當a=2時,某用戶一個月用了28 m3水,求該用戶這個月應繳納的水費;
(2)設某戶月用水量為n 立方米,當n>20時,則該用戶應繳納的水費________元(用含a、n的整式表示);
(3)當a=2時,甲、乙兩用戶一個月共用水40m3 ,已知甲用戶繳納的水費超過了24元,設甲用戶這個月用水xm3 ,試求甲、乙兩用戶一個月共繳納的水費(用含x的整式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4厘米,動點P從點A出發(fā)沿AB邊由A向B以1厘米/秒的速度勻速移動(點P不與點A、B重合),動點Q從點B出發(fā)沿拆線BC-CD以2厘米/秒的速度勻速移動。點P、Q同時出發(fā),當點P停止運動,點Q也隨之停止。聯(lián)結AQ交BD于點E。設點P運動時間為t秒。
(1)用t表示線段PB的長;
(2)當點Q在線段BC上運動時,t為何值時,∠BEP和∠BEQ相等;
(3)當t為何值時,線段P、Q之間的距離為2cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O外一點,過點C作⊙O的切線,切點為B,連結AC交⊙O于D,∠C=38°.點E在AB右側的半圓上運動(不與A、B重合),則∠AED的大小是( )
A.19°
B.38°
C.52°
D.76°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com