【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)P以每秒1個(gè)單位的速度從A向C運(yùn)動(dòng),同時(shí)點(diǎn)Q以每秒2個(gè)單位的速度從A→B→C方向運(yùn)動(dòng),它們到C點(diǎn)后都停止運(yùn)動(dòng),設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)在運(yùn)動(dòng)過程中,求P,Q兩點(diǎn)間距離的最大值;
(2)經(jīng)過t秒的運(yùn)動(dòng),求△ABC被直線PQ掃過的面積S與時(shí)間t的函數(shù)關(guān)系式;
(3)P,Q兩點(diǎn)在運(yùn)動(dòng)過程中,是否存在時(shí)間t,使得△PQC為等腰三角形?若存在,求出此時(shí)的t值;若不存在,請(qǐng)說明理由(≈2.24,結(jié)果保留一位小數(shù)).
【答案】
(1)
解:如圖1,過Q作QE⊥AC于E,連接PQ,
∵∠C=90°,
∴QE∥BC,
∴△ABC∽△AQE,
∵AQ=2t,AP=t,
∵∠C=90°,AC=8,BC=6,
∴AB=10,
∴PE=t,QE=t,
∴PQ2=QE2+PE2,
∴PQ=t,
當(dāng)Q與B重合時(shí),PQ的值最大,
∴當(dāng)t=5時(shí),PQ的最大值=.
(2)
如圖1,△ABC被直線PQ掃過的面積=S△AQP,
當(dāng)Q在AB邊上時(shí),S=APQE=tt=t2,(0<t≤5)
當(dāng)Q在BC邊上時(shí),△ABC被直線PQ掃過的面積=S四邊形ABQP,
∴S四邊形ABQP=S△ABC﹣S△PQC=×8×6﹣(8﹣t)(16﹣2t)=﹣t2+16t﹣40,(5<t≤8);
∴經(jīng)過t秒的運(yùn)動(dòng),△ABC被直線PQ掃過的面積S與時(shí)間t的函數(shù)關(guān)系式:S=t2或S=﹣t2+16t﹣40.
(3)存在,如圖2,連接CQ,PQ,
由(1)知QE=t,CE=AC﹣AE=8﹣,PQ=t,
∴CQ====2,
①當(dāng)CQ=CP時(shí),
即:2=8﹣t,
解得;t=,
②當(dāng)PQ=CQ時(shí),
即;t=2,
解得:t=,t=(不合題意舍去),
③當(dāng)PQ=PC時(shí),
即t=8﹣t,
解得:t=3﹣5≈1.7;
綜上所述:當(dāng)t=,t=,t=1.7時(shí),△PQC為等腰三角形.
【解析】(1)如圖1,過Q作QE⊥AC于E,連接PQ,由△ABC∽△AQE,得到比例式 , 求得PE=t , QE=t , 根據(jù)勾股定理得到PQ2=QE2+PE2 , 求出PQ=t,當(dāng)Q與B重合時(shí),PQ的值最大,于是得到當(dāng)t=5時(shí),PQ的最大值=3;
(2)由三角形的面積公式即可求得;
(3)存在,如圖2,連接CQ,PQ,分三種情況①當(dāng)CQ=CP時(shí),②當(dāng)PQ=CQ時(shí),③當(dāng)PQ=PC時(shí),列方程求解即可.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤。(用含x的代數(shù)式表示)
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,臺(tái)風(fēng)中心位于點(diǎn)O處,并沿東北方向(北偏東45°),以40千米/小時(shí)的速度勻速移動(dòng),在距離臺(tái)風(fēng)中心50千米的區(qū)域內(nèi)會(huì)受到臺(tái)風(fēng)的影響,在點(diǎn)O的正東方向,距離千米的地方有一城市A.
(1)問:A市是否會(huì)受到此臺(tái)風(fēng)的影響,為什么?
(2)在點(diǎn)O的北偏東15°方向,距離80千米的地方還有一城市B,問:B市是否會(huì)受到此臺(tái)風(fēng)的影響?若受到影響,請(qǐng)求出受到影響的時(shí)間;若不受到影響,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙A,交AB于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)E作AB的平行線EF交⊙A于點(diǎn)F,連接AF,BF,DF.
(1)求證:△ABC≌△ABF;
(2)當(dāng)∠CAB等于多少度時(shí),四邊形ADFE為菱形?請(qǐng)給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由
(3)把拋物線與直線y=x的交點(diǎn)稱為拋物線的不動(dòng)點(diǎn).若將(1)中拋物線平移,使其頂點(diǎn)為(m,2m),當(dāng)m滿足什么條件時(shí),平移后的拋物線總有不動(dòng)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,對(duì)角線AC,BD相交于點(diǎn)E,F(xiàn)是邊BA延長(zhǎng)線上一點(diǎn),連接EF,以EF為直徑作⊙O,交DC于D,G兩點(diǎn),AD分別于EF,GF交于I,H兩點(diǎn).
(1)求∠FDE的度數(shù);
(2)試判斷四邊形FACD的形狀,并證明你的結(jié)論;
(3)當(dāng)G為線段DC的中點(diǎn)時(shí),
①求證:FD=FI;
②設(shè)AC=2m,BD=2n,求⊙O的面積與菱形ABCD的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣1, ),以原點(diǎn)O為中心,將點(diǎn)A順時(shí)針旋轉(zhuǎn)150°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)為( )
A.(0,﹣2)
B.(1,﹣ )
C.(2,0)
D.( ,﹣1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com