【題目】如圖,在矩形ABCDAB=6,BC=8,將矩形ABCD沿CE折疊后,使點(diǎn)D恰好落在對(duì)角線AC上的點(diǎn)F

1)求EF的長(zhǎng);

2)求梯形ABCE的面積

【答案】1EF=3;(2)梯形ABCE的面積為39

【解析】試題分析:1)根據(jù)折疊的性質(zhì),折疊前后邊相等,即 得: 中,根據(jù)勾股定理,可將的長(zhǎng)求出,知的長(zhǎng),可求出的長(zhǎng),在中,根據(jù),可將的長(zhǎng)求出;
2)根據(jù)S梯形=,將各邊的長(zhǎng)代入進(jìn)行求解即可.

試題解析:(1)設(shè)EF=x依題意知:△CDE≌△CFE

DE=EF=x,CF=CD=6.

∵在,

AF=ACCF=4AE=ADDE=8x.

,

解得x=3,即:EF=3.

(2)(1)知:AE=83=5,

梯形ABCE的面積


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(k為常數(shù),且k>0)與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,經(jīng)過(guò)點(diǎn)B的直線與拋物線的另一個(gè)交點(diǎn)為D.

(1)若點(diǎn)D的橫坐標(biāo)為x= -4,求這個(gè)一次函數(shù)與拋物線的解析式;

(2)若直線m平行于該拋物線的對(duì)稱軸,并且可以在線段AB間左右移動(dòng),它與直線BD和拋物線分別交于點(diǎn)E、F,求當(dāng)m移動(dòng)到什么位置時(shí),EF的值最大,最大值是多少?

(3)問(wèn)原拋物線在第一象限是否存在點(diǎn)P,使得APB∽△ABC?若存在,請(qǐng)求出這時(shí)k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩地相距480km,C地在AB兩地之間.一輛轎車以100km/h的速度從A地出發(fā)勻速行駛,前往B.同時(shí),一輛貨車以80km/h的速度從B地岀發(fā),勻速行駛,前往A.

(1)當(dāng)兩車相遇時(shí),求轎車行駛的時(shí)間;

(2)當(dāng)兩車相距120km時(shí),求轎車行駛的時(shí)間;

(3)若轎車到達(dá)B地后,立刻以120km/h的速度原路返回,再次經(jīng)過(guò)C,兩次經(jīng)過(guò)C地的時(shí)間間隔為2.2h,C地距離A地路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年中國(guó)北京世界園藝博覽會(huì)于428日晚在北京·延慶隆重開幕,本屆世園會(huì)主題為綠色生活、美麗家園.自開園以來(lái),世園會(huì)迎來(lái)了世界各國(guó)游客進(jìn)園參觀.據(jù)統(tǒng)計(jì),僅五一小長(zhǎng)假前來(lái)世園會(huì)打卡的游客就總計(jì)約32.7萬(wàn)人次.其中中國(guó)館也是非常受歡迎的場(chǎng)館.據(jù)調(diào)查,中國(guó)館51日游覽人數(shù)約為4萬(wàn)人,53日游覽人數(shù)約為9萬(wàn)人,若51日到53日游客人數(shù)的日增長(zhǎng)率相同,求中國(guó)館這兩天游客人數(shù)的日平均增長(zhǎng)率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 觀察下列三行數(shù):

2,4,8,16,32,

,1,2,4,8,

1,5,7,17,31,

如圖,第一行數(shù)的第n(n為正整數(shù))個(gè)數(shù)用來(lái)表示,第二行數(shù)的第n個(gè)數(shù)用來(lái)表示,第三行數(shù)的第n個(gè)數(shù)用來(lái)表示

1)根據(jù)你發(fā)現(xiàn)的規(guī)律,請(qǐng)用含n的代數(shù)式表示數(shù),,的值= = ; = ;

2)取每行的第6個(gè)數(shù),計(jì)算這三個(gè)數(shù)的和

3)若記為x, (結(jié)果用含x的式子表示并化簡(jiǎn))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于點(diǎn)F,連接DF.

(1)求證:∠BAC=∠DAC,∠AFD=∠CFE;

(2)若AB∥CD,試證明四邊形ABCD是菱形;

(3)在(2)的條件下,試確定E點(diǎn)的位置,使∠EFD=∠BCD,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時(shí)加上4的是(  )

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鐵路上AB兩點(diǎn)相距25 kmC,D為兩村莊,DAAB于點(diǎn)A,CBAB于點(diǎn)B,已知DA15 km,CB10 km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A(2,0),B(0,﹣6)兩點(diǎn),

(1)求這個(gè)二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案