【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將扇形OAB沿過(guò)點(diǎn)B的直線(xiàn)折疊,點(diǎn)O恰好落在弧AB上點(diǎn)D處,折痕交OA于點(diǎn)C,則有下列選項(xiàng):
①∠ACD=60°;
②CB=6;
③陰影部分的周長(zhǎng)為12+3π;
④陰影部分的面積為9π﹣12.
其中正確的是 (填寫(xiě)編號(hào)).
【答案】①③④.
【解析】
試題分析:①正確.如圖連接OD.
∵△BCD是由△BCO翻折得到,
∴BO=BD=OD,
∴△ODB是等邊三角形,
∴∠DBO=60°,
∴∠CBO=∠CBD=30°,
∵∠COB=90°,
∴∠OCB=90°﹣∠CBO=60°=∠BCD,
∴∠ACD=180°﹣∠BCO﹣∠BCD=60°,故①正確.
②錯(cuò)誤.在RT△BOC中,∵∠BOC=90°,OB=6,∠OBC=30°,
∴cos30°=,
∴BC=4,故②錯(cuò)誤.
③正確.陰影部分周長(zhǎng)=AC+CD+BD+弧AB的長(zhǎng)=AC+OC+BO+弧AB的長(zhǎng)=12+=12+3π,故③正確.
④正確.陰影部分面積=S扇形OAB﹣2S△BOC=π62﹣2××6×2=18π﹣12,故④正確.
故答案為①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列特征量不能反映一組數(shù)據(jù)集中趨勢(shì)的是( )
A.眾數(shù)
B.中位數(shù)
C.方差
D.平均數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是AB邊上的高,∠BAC的平分線(xiàn)AE交CD于點(diǎn)F,交BC于點(diǎn)E,過(guò)點(diǎn)E作EG⊥AB于G,連結(jié)GF.求證:四邊形CFGE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“在角的內(nèi)部,到角的兩邊距離相等的點(diǎn)在角的平分線(xiàn)上”的逆命題是:________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(a+1,﹣+1)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)在第四象限,則a的取值范圍在數(shù)軸上表示正確的是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD,點(diǎn)M,N分別在邊AD和邊BC上,點(diǎn)E,F(xiàn)在線(xiàn)段BD上,且AM=CN,DF=BE.求證:
(1)∠DFM=∠BEN;
(2)四邊形MENF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△MNP中,∠N=60°,MN=3,NP=6,正方形ABCD的邊長(zhǎng)為1,它的一邊AD在MN上,且頂點(diǎn)A與M重合.現(xiàn)將正方形ABCD沿邊MN→NP進(jìn)行翻滾,直到正方形有一個(gè)頂點(diǎn)與P重合即停止?jié)L動(dòng),正方形在整個(gè)翻滾過(guò)程中,點(diǎn)A所經(jīng)過(guò)的路線(xiàn)與Rt△MNP的兩邊MN、NP所圍成的圖形的面積是( )
A. +2 B.2π+2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分線(xiàn)BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫(xiě)作法和證明);
(2)連接DE,求證:△ADE≌△BDE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com