【題目】郊區(qū)某中學(xué)學(xué)霸父母只要有時(shí)間就陪孩子一起完成家庭作業(yè),在某天晚上,勤芬準(zhǔn)備完成作業(yè)時(shí):化簡(jiǎn)(x2+7x+6)﹣(7x+8x24).發(fā)現(xiàn)系數(shù)印刷不清楚.

1)她把猜成3,請(qǐng)你化簡(jiǎn):(3x2+7x+6)﹣(7x+8x24);

2)爸爸說:你猜錯(cuò)了,我看了標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).請(qǐng)你通過計(jì)算說明來幫助勤芬得到原題中是幾.

【答案】1)﹣5x2+10;(2)原題中的數(shù)為8

【解析】

1)去括號(hào),合并同類項(xiàng)即可得解;

2)設(shè)看不清的數(shù)字為a,然后去括號(hào)合并同類項(xiàng),再由結(jié)果為常數(shù),即可得出a.

1)原式=3x2+7x+67x8x2+4

=5x2+10

2)設(shè)看不清的數(shù)字為a,

則原式=ax2+7x+6)﹣(7x+8x24

=ax2+7x+67x8x2+4

=a8x2+10;

因?yàn)榻Y(jié)果為常數(shù),所以a8=0,

解得:a=8

即原題中的數(shù)為8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△OAB,點(diǎn)O為原點(diǎn),點(diǎn)AB的坐標(biāo)分別是(2,1)(24)

(1)若點(diǎn)A、B都在一次函數(shù)y=kx+b圖象上,求k,b的值;

(2)求△OAB的邊AB上的中線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乒乓球是我國(guó)的國(guó)球,也是世界上流行的球類體育項(xiàng)目.我國(guó)乒乓球名將與其對(duì)應(yīng)身高如下表所示:

乒乓球名將

劉詩雯

鄧亞萍

白楊

丁寧

陳夢(mèng)

孫穎莎

姚彥

身高(

160

155

171

173

163

160

175

這些乒乓球名將身高的中位數(shù)和眾數(shù)是(

A.160163B.173,175C.163160D.172,160

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)絕對(duì)值后,我們知道,|a|表示數(shù)a在數(shù)軸上的對(duì)應(yīng)點(diǎn)與原點(diǎn)的距離.如:|5|表示5在數(shù)軸上的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離.而|5|=|50|,即|50|也可理解為5、0在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.類似的,|53|表示53之差的絕對(duì)值,也可理解為53兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離.如|x3|的幾何意義是數(shù)軸上表示有理數(shù)3的點(diǎn)與表示數(shù)x的點(diǎn)之間的距離,一般地,點(diǎn)AB在數(shù)軸上分別表示數(shù)a、b,那么AB之間的距離可表示為|ab|

請(qǐng)根據(jù)絕對(duì)值的意義并結(jié)合數(shù)軸解答下列問題:

1)數(shù)軸上表示23的兩點(diǎn)之間的距離是 ;數(shù)軸上表示數(shù)a的點(diǎn)與表示﹣2的點(diǎn)之間的距離表示為 ;

2)數(shù)軸上點(diǎn)P表示的數(shù)是2P、Q兩點(diǎn)的距離為3,則點(diǎn)Q表示的數(shù)是 ;

3)數(shù)軸上有一個(gè)點(diǎn)表示數(shù)a,則|a+1|+|a-3|+|a+8|的最小值為 ;

4ab、c、d在數(shù)軸上的位置如下圖所示,若|a-d|=12,|b-d|=7,|a-c|=9,則|b-c|等于 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段ABy軸于點(diǎn)C.已知實(shí)數(shù)mnmn)分別是方程x2﹣2x﹣3=0的兩根.

1)求直線ABOB的解析式.

2)求拋物線的解析式.

3)若點(diǎn)P為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)Dy軸右側(cè)),連接OD、BD.問△BOD的面積是否存在最大值?若存在,求出這個(gè)最大值并寫出此時(shí)點(diǎn)D的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的高速發(fā)展,計(jì)算機(jī)技術(shù)已是每位學(xué)生應(yīng)該掌握的基本技能.為了提高學(xué)生對(duì)計(jì)算機(jī)的興趣,老師把甲、乙兩組各有10名學(xué)生,進(jìn)行電腦漢字輸入速度比賽,各組參賽學(xué)生每分鐘輸入漢字個(gè)數(shù)統(tǒng)計(jì)如下表:

輸入漢字(個(gè))

132

133

134

135

136

137

甲組人數(shù)(人)

1

0

1

5

2

1

乙組人數(shù)(人)

0

1

4

1

2

2

1)請(qǐng)你填寫下表中甲班同學(xué)的相關(guān)數(shù)據(jù).

眾數(shù)

中位數(shù)

平均數(shù)(

方差(

甲組

乙組

134

134.5

135

1.8

2)若每分鐘輸入漢字個(gè)數(shù)136及以上為優(yōu)秀,則從優(yōu)秀人數(shù)的角度評(píng)價(jià)甲、乙兩組哪個(gè)成績(jī)更好一些?

3)請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),從不同角度評(píng)價(jià)甲、乙兩組學(xué)生的比賽成績(jī)(至少從兩個(gè)角度進(jìn)行評(píng)價(jià)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B-2,0),點(diǎn)C8,0),與y軸交于點(diǎn)A

1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;

2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)NNM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);

3)連接OM,在(2)的結(jié)論下,求OMAC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:,

2)解下列方程組:

i,

ii,

3)求不等式的解集,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,得到一“波浪線”,若點(diǎn)P(2018,m)在此“波浪線”上,則m的值為( )

A. 4 B. ﹣4 C. ﹣6 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案