精英家教網 > 初中數學 > 題目詳情
(2012•萊蕪)若點P(a,2)在一次函數y=2x+4的圖象上,它關于y軸的對稱點在反比例函數y=
k
x
的圖象上,則反比例函數的解析式為
y=
2
x
y=
2
x
分析:把P的坐標代入一次函數的解析式求得P的坐標,然后求得關于y軸的對稱點,然后代入反比例函數的解析式即可求得反比例函數的解析式.
解答:解:把P(a,2)代入y=2x+4得:2a+4=2,
解得:a=-1,
則P的坐標是:(-1,2),P關于y軸的對稱點是:(1,2).
把(1,2)代入反比例函數的解析式得:
k
1
=2,
解得:k=2.
則反比例函數的解析式是:y=
2
x

故答案是:y=
2
x
點評:本題考查了反比例函數圖象上點的坐標特征,經過函數的某點一定在函數的圖象上.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•萊蕪)若一個圓錐的底面積為4πcm2,高為4
2
cm,則該圓錐的側面展開圖中圓心角為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•萊蕪)某校學生會準備調查六年級學生參加“武術類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數.
(1)確定調查方式時,甲同學說:“我到六年級(1)班去調查全體同學”;乙同學說:“放學時我到校門口隨機調查部分同學”;丙同學說:“我到六年級每個班隨機調查一定數量的同學”.請指出哪位同學的調查方式最合理.
類別 頻數(人數) 頻率
武術類   0.25
書畫類 20 0.20
棋牌類 15 b
器樂類    
合計 a 1.00
(2)他們采用了最為合理的調查方法收集數據,并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.
請你根據以上圖表提供的信息解答下列問題:
①a=
100
100
,b=
0.15
0.15
;
②在扇形統(tǒng)計圖中,器樂類所對應扇形的圓心角的度數是
144°
144°
;
③若該校六年級有學生560人,請你估計大約有多少學生參加武術類校本課程.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•萊蕪)為表彰在“締造完美教室”活動中表現積極的同學,老師決定購買文具盒與鋼筆作為獎品.已知5個文具盒、2支鋼筆共需100元;4個文具盒、7支鋼筆共需161元.
(1)每個文具盒、每支鋼筆各多少元?
(2)時逢“五一”,商店舉行優(yōu)惠促銷活動,具體辦法如下:文具盒九折,鋼筆10支以上超出部分八折.設買x個文具盒需要y1元,買x支鋼筆需要y2元,求y1、y2關于x的函數關系式;
(3)若購買同一種獎品,并且該獎品的數量超過10件,請分析買哪種獎品省錢.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•萊蕪)如圖,頂點坐標為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,3),與x軸交于A、B兩點.
(1)求拋物線的表達式;
(2)設拋物線的對稱軸與直線BC交于點D,連接AC、AD,求△ACD的面積;
(3)點E為直線BC上一動點,過點E作y軸的平行線EF,與拋物線交于點F.問是否存在點E,使得以D、E、F為頂點的三角形與△BCO相似?若存在,求點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案