(2006•南充)如圖,PA切⊙O于A,OP交⊙O于B,且PB=1,PA=,則陰影部分的面積:S=   
【答案】分析:連接OA,延長(zhǎng)BO交圓于點(diǎn)E,則∠A=90°,由切割線定理知AP2=PB•PE,即可求得圓的半徑OB=OA=1,得到tanP=OA:PA=1:,確定∠P,∠AOB的度數(shù),所以陰影部分的面積=S△PAO-S扇形OAB,代入數(shù)值即可求值.
解答:解:連接OA,延長(zhǎng)BO交圓于點(diǎn)E,則∠A=90°,
∵AP2=PB•PE,
∴PE=3,BE=PE-PB=3-1=2,
∴OB=OA=1,tanP=OA:PA=1:,
∴∠P=30°,∠AOB=60°,
∴陰影部分的面積=S△PAO-S扇形OAB=×1×-=-
點(diǎn)評(píng):本題利用了切線的概念、直角三角形的性質(zhì)、直角三角形的面積公式、扇形的面積公式、正切的概念求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•南充)如圖,經(jīng)過點(diǎn)M(-1,2),N(1,-2)的拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn).
(1)求b的值.
(2)若OC2=OA•OB,試求拋物線的解析式.
(3)在該拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PAC的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省南充市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•南充)如圖,經(jīng)過點(diǎn)M(-1,2),N(1,-2)的拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn).
(1)求b的值.
(2)若OC2=OA•OB,試求拋物線的解析式.
(3)在該拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PAC的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省南充市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•南充)如圖,經(jīng)過點(diǎn)M(-1,2),N(1,-2)的拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn).
(1)求b的值.
(2)若OC2=OA•OB,試求拋物線的解析式.
(3)在該拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PAC的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省南充市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•南充)如圖,湖中有建筑物AB,某人站在建筑物頂部A在岸上的投影處C,發(fā)現(xiàn)自己的影長(zhǎng)與身高相等.他沿BC方向走30m到D處,測(cè)得頂部A的仰角為30°,求建筑物AB的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省南充市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•南充)如圖,PAB,PCD是⊙O的兩條割線,AB是⊙O的直徑,AC∥OD.
(1)求證:CD=______;(先填后證)
(2)若,試求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案