【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),連接.
(1)求點(diǎn)三點(diǎn)的坐標(biāo)和拋物線的對稱軸;
(2)點(diǎn)為拋物線對稱軸上一點(diǎn),連接,,若,求點(diǎn)的坐標(biāo);
(3)已知點(diǎn),若是拋物線上一個(gè)動(dòng)點(diǎn)(其中),連接,,,求面積的最大值及此時(shí)點(diǎn)的坐標(biāo).
【答案】(1),. .拋物線的對稱軸為直線;(2);(3)當(dāng)時(shí),面積有最大值是. .
【解析】
(1)令y=0,解一元二次方程可得A、B的坐標(biāo),由x=0,可得點(diǎn)C的坐標(biāo).把拋物線解析式配方即可得到對稱軸;
(2)設(shè)點(diǎn)D(1,m),由CD=BD,得到,根據(jù)兩點(diǎn)間的距離公式列方程,解方程即可;
(3)過點(diǎn)P作PQ⊥y軸于點(diǎn)Q,過點(diǎn)E作直線ER⊥y軸于點(diǎn)R,過點(diǎn)P作PF⊥ER于點(diǎn)F,可得四邊形QRFP是矩形.由,得到.把代入,配方即可得到結(jié)論.
(1)令,得:.
解方程,得:,.
∵點(diǎn)在點(diǎn)的右側(cè),
∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.
由,得:,
∴點(diǎn)的坐標(biāo)為.
∵.
∴拋物線的對稱軸為直線.
(2)設(shè)點(diǎn),
∵,∴,
∴
∴.
∴D(1,).
(3)如圖,過點(diǎn)P作PQ⊥y軸于點(diǎn)Q,過點(diǎn)E作直線ER⊥y軸于點(diǎn)R,過點(diǎn)P作PF⊥ER于點(diǎn)F,
∴∠PQR=∠QRF=∠RFP=90°,
∴四邊形QRFP是矩形.
∵,
∴
.
∵,
∴
∴當(dāng)時(shí),面積有最大值是.
當(dāng)時(shí),,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為∠MBN角平分線上一點(diǎn),⊙O與BN相切于點(diǎn)C,連結(jié)CO并延長交BM于點(diǎn)A,過點(diǎn)A作AD⊥BO于點(diǎn)D.
(1)求證:AB為⊙O的切線;
(2)若BC=6,tan∠ABC=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩個(gè)等腰Rt△ADE、Rt△ABC如圖放置在一起,其中∠DAE=∠ABC=90°.點(diǎn)E在AB上,AC與DE交于點(diǎn)H,連接BH、CE,且∠BCE=15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;④;正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,老師出示了一個(gè)問題:
如圖,△ABC≌△DEF(點(diǎn)A、B分別與點(diǎn)D、E對應(yīng)),AB=AC.現(xiàn)將△ABC與△DEF按如圖所示的方式疊放在一起,現(xiàn)將△ABC保持不動(dòng), △DEF運(yùn)動(dòng),且滿足點(diǎn)E在BC邊從B向C移動(dòng)(不與B、C重合),DE始終經(jīng)過點(diǎn)A,EF與AC邊交于點(diǎn)M.求證:△ABE∽△ECM.
(1)請解答老師提出的問題.
(2)受此問題的啟發(fā),小明將△DEF繞點(diǎn)E按逆時(shí)針旋轉(zhuǎn), DE、EF分別交線段AB、AC邊于點(diǎn)N、M,連接MN,如圖2,當(dāng)EB=EC時(shí),小明猜想△NEM與△ECM相似.小明的猜想正確嗎?請你作出判斷,并說明理由.
(3)在(2)的條件下,以E為圓心,作⊙E,使得AB與⊙E相切,請?jiān)趫D3中畫出⊙E,并判斷直線MN與⊙E的位置關(guān)系,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并解答問題:
楊輝和他的一個(gè)數(shù)學(xué)問題
我國古代對代數(shù)的研究,特別是對方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.
楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學(xué)家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個(gè)問題(選自楊輝所著《田畝比類乘除捷法》):
直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.
請你用學(xué)過的知識(shí)解決這個(gè)問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點(diǎn)P在AB的延長線上,弦CE交AB于點(diǎn),連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=x2在第一象限上的一個(gè)點(diǎn),連結(jié)OA,過點(diǎn)A作AB⊥OA,交y軸于點(diǎn)B,設(shè)點(diǎn)A的橫坐標(biāo)為n.
(探究):
(1)當(dāng)n=1時(shí),點(diǎn)B的縱坐標(biāo)是 ;
(2)當(dāng)n=2時(shí),點(diǎn)B的縱坐標(biāo)是 ;
(3)點(diǎn)B的縱坐標(biāo)是 (用含n的代數(shù)式表示).
(應(yīng)用):
如圖②,將△OAB繞著斜邊OB的中點(diǎn)順時(shí)針旋轉(zhuǎn)180°,得到△BCO.
(1)求點(diǎn)C的坐標(biāo)(用含n的代數(shù)式表示);
(2)當(dāng)點(diǎn)A在拋物線上運(yùn)動(dòng)時(shí),點(diǎn)C也隨之運(yùn)動(dòng).當(dāng)1≤n≤5時(shí),線段OC掃過的圖形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,AD與BC相交于點(diǎn)E.連接BD,作∠BDF=∠BAD,DF與AB的延長線相交于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF∥BC,求證:AD平分∠BAC;
(3)在(2)的條件下,若AB=10,BD=6,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年2月16日,由著名導(dǎo)演林超賢的電影《紅海行動(dòng)》在各大影院上映后,好評(píng)不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用摸球的辦法決定誰去看電影,規(guī)則如下:在一個(gè)不透明的袋子中裝有編號(hào)1~4的四個(gè)球(除編號(hào)外都相同),從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再從中摸出一個(gè)球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.
(1)請用列表或畫樹狀圖的方法表示出兩數(shù)和的所有可能的結(jié)果;
(2)分別求出小亮和小麗獲勝的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com