【題目】如圖,某水平地面上建筑物的高度為AB在點(diǎn)D和點(diǎn)F處分別豎立高是2米的標(biāo)桿CDEF,兩標(biāo)桿相隔52,并且建筑物AB標(biāo)桿CDEF在同一豎直平面內(nèi),從標(biāo)桿CD后退2米到點(diǎn)G,G處測得建筑物頂端A和標(biāo)桿頂端C在同一條直線上從標(biāo)桿FE后退4米到點(diǎn)H,H處測得建筑物頂端A和標(biāo)桿頂端E在同一條直線上,求建筑物的高

【答案】54

【解析】試題分析:首先由ABCDEF可得出CDGABGEFHABH,再根據(jù)相似三角形的對應(yīng)邊成比例列出比例式求解即可

試題解析:解:ABBH,CDBHEFBH,,∴ABCDEF,∴CDGABG,EFHABH,∴,,∵CD=DG=EF=2mDF=52m,FH=4m,∴,,∴,解得BD=52,∴,解得AB=54.

答:建筑物的高為54

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.

(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);

(2)動點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動;同時(shí),動點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動,過點(diǎn)P作,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動時(shí)間為秒.

NPH的面積為1,求的值;

點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;

(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點(diǎn)H的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的推理.

如圖,BE平分ABD,DE平分BDC,且α+β=90°,試說明:ABCD.

完成推理過程:

BE平分∠ABD(已知)

∴∠ABD2α(__________)

DE平分∠BDC(已知),

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知),

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)小明到某服裝商場進(jìn)行社會調(diào)查,了解到該商場為了激勵營業(yè)員的工作積極性,實(shí)行“月總收入=基本工資+計(jì)件獎金”的方法,并獲得如下信息:

營業(yè)員A:月銷售件數(shù)200件,月總收入2400元;

營業(yè)員B:月銷售件數(shù)300件,月總收入2700元;

假設(shè)營業(yè)員的月基本工資為元,銷售每件服裝獎勵元.

(1)求、的值;

(2)若某營業(yè)員的月總收入不低于3100元,那么他當(dāng)月至少要賣服裝多少件?

(3)商場為了多銷售服裝,對顧客推薦一種購買方式:如果購買甲3件,乙2件,丙1件共需350元;如果購買甲1件,乙2件,丙3件共需370元.某顧客想購買甲、乙、丙各一件共需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在△ABC中,AB=AC,點(diǎn)P,D分別是BCAC邊上的點(diǎn),且∠APD=∠B.

(1)求證:AC·CD=CP·BP;

(2)若AB=10,BC=12,當(dāng)PDAB時(shí),求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)我市經(jīng)濟(jì)的快速發(fā)展,加快道路建設(shè),某高速公路建設(shè)工程中需修隧道AB,如圖,在山外一點(diǎn)C測得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長.(參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=﹣x+6與x,y軸分別交于A,B兩點(diǎn),點(diǎn)C(0,n)是線段BO上一點(diǎn),將△AOB沿直線AC折疊,點(diǎn)B剛好落在x軸負(fù)半軸上,則點(diǎn)C的坐標(biāo)是(  )

A. (0,3) B. (0, C. (0, D. (0,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形,,,按如圖所示的方式放置.點(diǎn),,和點(diǎn),分別在直線軸上,已知點(diǎn),則點(diǎn)的坐標(biāo)是 ,點(diǎn)的坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊答案