已知△ABC中,∠BAC=90°,點D,E在BC邊上,且BA=BE,CA=CD,作△ADE的外接圓⊙O并連接OA、OD、OE.
(1)求證:BO平分∠ABC;
(2)求證:∠DAO=90°-∠AED;
(3)求∠DOE的度數(shù).

(1)證明:∵OA=OE,BO=BO,BA=BE,
∴△OAB≌△OEB,
∴∠ABO=∠EBO.
即BO平分∠ABC.

(2)證明:∵∠DAO=,
∠AOD=2∠AED,
∴∠DAO=90°-∠AED.

(3)解:∵BA=BE,CA=CD,
∴∠BAE=∠BEA,∠CAD=∠CDA.
∴∠BEA=,∠CDA=
∴∠BEA+∠CDA=180°-(∠ABC+∠ACB)=135°.
∴∠DAE=45°,
∴∠DOE=90°.
分析:(1)根據(jù)全等三角形的性質(zhì)即可證明;
(2)根據(jù)等腰三角形的性質(zhì)、圓周角定理即可證明;
(3)根據(jù)三角形的內(nèi)角和定理以及等腰三角形的性質(zhì)和圓周角定理進(jìn)行計算.
點評:綜合運用了全等三角形的判定以及性質(zhì)、三角形的內(nèi)角和定理等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點,且點P不與點A、B重合,點Q不與點B、C重合.
(1)在以下五個結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點的三角形全等于△PQB;④以A、P、C為頂點的三角形全等于△CPQ;⑤以A、P、C為頂點的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號填入題中的模線上).
(2)設(shè)AC=BC=1,當(dāng)CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=( 。

查看答案和解析>>

同步練習(xí)冊答案