如圖,在平面直角坐標(biāo)系中,三個機(jī)戰(zhàn)的坐標(biāo)分別為,延長AC到點(diǎn)D,使CD=,過點(diǎn)D作DE∥AB交BC的延長線于點(diǎn)E.

(1)求D點(diǎn)的坐標(biāo);

(2)作C點(diǎn)關(guān)于直線DE的對稱點(diǎn)F,分別連結(jié)DF、EF,若過B點(diǎn)的直線將四邊形CDFE分成周長相等的兩個四邊形,確定此直線的解析式;

(3)設(shè)G為y軸上一點(diǎn),點(diǎn)P從直線與y軸的交點(diǎn)出發(fā),先沿y軸到達(dá)G點(diǎn),再沿GA到達(dá)A點(diǎn),若P點(diǎn)在y軸上運(yùn)動的速度是它在直線GA上運(yùn)動速度的2倍,試確定G點(diǎn)的位置,使P點(diǎn)按照上述要求到達(dá)A點(diǎn)所用的時間最短。(要求:簡述確定G點(diǎn)位置的方法,但不要求證明)

解:(1)∵,,

設(shè)軸交于點(diǎn)

可得

,

同理可得

點(diǎn)的坐標(biāo)為

 


(2)由(1)可得點(diǎn)的坐標(biāo)為

可得軸所在直線是線段的垂直平分線.

∴點(diǎn)關(guān)于直線的對稱點(diǎn)軸上.

互相垂直平分.

∴四邊形為菱形,且點(diǎn)為其對稱中心.

作直線

設(shè)分別交于點(diǎn)、點(diǎn).可證

,

∴直線將四邊形分成周長相等的兩個四邊形.

由點(diǎn),點(diǎn)在直線上,

可得直線的解析式為

(3)確定點(diǎn)位置的方法:過點(diǎn)作于點(diǎn).則軸的交點(diǎn)為所求的點(diǎn).

,

可得,

中,

點(diǎn)的坐標(biāo)為.(或點(diǎn)的位置為線段的中點(diǎn))

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案