關于二次函數,以下結論:① 拋物線交軸有兩個不同的交點;②不論k取何值,拋物線總是經過一個定點;③設拋物線交軸于A、B兩點,若AB=1,則k=9;;④ 拋物線的頂點在圖像上.其中正確的序號是( )
A.①②③④ B.②③ C.②④ D.①②④
科目:初中數學 來源: 題型:
如圖,AB是⊙O的直徑,BC⊥AB,垂足為點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.則下列結論正確的有( )
①∠CBD=∠CEB; ② ; ③點F是BC的中點;④若, tanE=
A. ①② B. ③④ C. ①②④ D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
在6張完全相同的卡片上分別畫上線段、等邊三角形、平行四邊形、直角梯形、雙曲線、圓,在看不見圖形的情況下隨機摸出1張,這張卡片上的圖形既是中心對稱圖形又是軸對稱圖形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
某校九年級準備購買一批筆獎勵優(yōu)秀學生,在購買時發(fā)現(xiàn),每只筆可以打九折,用360元錢購買的筆,打折后購買的數量比打折前多10本。
(1)求打折前每支筆的售價是多少元?
(2)由于學生的需求不同,學校決定購買筆和筆袋共80件,筆袋每個原售價為10元,兩種物品都打八折,若購買總金額不低于400元,且不高于405元,問有哪幾種購買方案?
(3)在(2)的條件下,求購買總金額的最小值。
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,Rt△ABC的直角邊BC在x軸正半軸上,點D為斜邊AC的中點,DB的延長線交y軸負半軸于點E,反比例函數的圖象經過點A.若S△BEC=4,則k的值為 ;
查看答案和解析>>
科目:初中數學 來源: 題型:
閱讀理解:配方法是中學數學的重要方法,用配方法可求最大(。┲。
對于任意正實數a、b,可作如下變形a+b==-+=+ ,
又∵≥0, ∴+ ≥0+,即≥.
(1)根據上述內容,回答下列問題:在≥(a、b均為正實數)中,若ab為定值p,則a+b≥,當且僅當a、b滿足 時,a+b有最小值.
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b, 試根據圖形驗證≥成立,并指出等號成立時的條件.
(3)探索應用:如圖2,已知A為反比例函數的圖像上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉,保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連結DF、EF,求四邊形ADFE面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com