【題目】某星期天,八(1)班開展社會實踐活動,第一小組花90元從蔬菜批發(fā)市場批發(fā)了黃瓜和茄子共40kg,到蔬菜市場去賣,黃瓜和茄子當(dāng)天的批發(fā)價與零售價如表所示:
品名 | 黃瓜 | 茄子 |
批發(fā)價/(元/kg) | 2.4 | 2 |
零售價/(元/kg) | 3.6 | 2.8 |
(1)黃瓜和茄子各批發(fā)了多少kg?
(2)該小組當(dāng)天賣完這些黃瓜和茄子可賺多少錢?
【答案】(1)黃瓜批發(fā)了25kg,茄子批發(fā)了15kg;(2)可賺42元.
【解析】
(1)設(shè)他當(dāng)天購進(jìn)黃瓜x千克,茄子y千克,根據(jù)黃瓜的批發(fā)價是2.4元,茄子批發(fā)價是2元,共花了90元,列出方程,求出x的值,即可求出答案;
(2)根據(jù)黃瓜和茄子的斤數(shù),再求出每斤黃瓜和茄子賺的錢數(shù),即可求出總的賺的錢數(shù).
(1)設(shè)黃瓜批發(fā)了xkg,茄子批發(fā)了ykg,
根據(jù)題意,得,
解得,
答:黃瓜批發(fā)了25kg,茄子批發(fā)了15kg.
(2)(3.6﹣2.4)×25+(2.8﹣2)×15=42(元).
答:該小組當(dāng)天賣完這些黃瓜和茄子可賺42元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.
(1)求證:四邊形ABCD是平行四邊形;
(2)直接寫出圖中所有相等的線段(AE=CF除外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬圣節(jié)兩周前,某商店購進(jìn)1000個萬圣節(jié)面具,進(jìn)價為每個6元,第一周以每個10元的價格售出200個;隨著萬圣節(jié)的臨近,預(yù)計第二周若按每個10元的價格銷售可售出400個,但商店為了盡快減少庫存,決定單價降價x元銷售根據(jù)市場調(diào)查,單價每降低1元,可多售出100個,但售價不得低于進(jìn)價;節(jié)后,商店對剩余面具清倉處理,以第一周售價的四折全部售出.
當(dāng)單價降低2元時,計算第二周的銷售量和售完這批面具的總利潤;
如果銷售完這批面具共獲利1300元,問第二周每個面具的銷售價格為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中建立如圖的平面直角坐標(biāo)系xOy,△ABC的三個頂點都在格點上,點A的坐標(biāo)是(4,4),請解答下列問題:
(1)將△ABC向下平移5單位長度,畫出平移后的并寫出點A對應(yīng)點的坐標(biāo);
(2)畫出關(guān)于y軸對稱的 并寫出的坐標(biāo);
(3)=______.(直接寫答案)
(4)在x軸上求作一點P,使PA+PB最。ú粚懽鞣,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15厘米,寬為10厘米,高為20厘米,點B到點C的距離是5厘米。一只小蟲在長方體表面從A爬到B的最短路程是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)yx+4的圖象與x軸和y軸分別交于A、B兩點.動點P從點A出發(fā),在線段AO上以每秒1個單位長度的速度向點O作勻速運動,到達(dá)點O即停止運動.其中A、Q兩點關(guān)于點P對稱,以線段PQ為邊向上作正方形PQMN.設(shè)運動時間為秒.如圖①.
(1)當(dāng)t=2秒時,OQ的長度為 ;
(2)設(shè)MN、PN分別與直線yx+4交于點C、D,求證:MC=NC;
(3)在運動過程中,設(shè)正方形PQMN的對角線交于點E,MP與QD交于點F,如圖2,求OF+EN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2 - 2(1-m)x+m2的兩實數(shù)根為x1,x2.
(1)求m的取值范圍;
(2)設(shè),當(dāng)m為何值時,y有最小值,求y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點C作CE∥BD,過點D作DE∥AC,CE與DE相交于點E.
(1)求證:四邊形CODE是矩形.
(2)若AB=5,AC=6,求四邊形CODE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC,點D,E分別在邊AC,BC上,CD=CE,連接AE,點F,H,G分別為DE,AE,AB的中點連接FH,HG
(1)觀察猜想圖1中,線段FH與GH的數(shù)量關(guān)系是 ,位置關(guān)系是
(2)探究證明:把△CDE繞點C順時針方向旋轉(zhuǎn)到圖2的位置,連接AD,AE,BE判斷△FHG的形狀,并說明理由
(3)拓展延伸:把△CDE繞點C在平面內(nèi)自由旋轉(zhuǎn),若CD=4,AC=8,請直接寫出△FHG面積的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com