【題目】如圖1:在等邊△ABC中,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連結(jié)BE,CD,點(diǎn)M、N、P分別是BE、CD、BC的中點(diǎn).
(1)觀察猜想
圖1中△PMN的形狀是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,△PMN的形狀是否發(fā)生改變?并說明理由.
【答案】(1)等邊三角形;(2)△PMN的形狀不發(fā)生改變,仍為等邊三角形.
【解析】分析:(1)由等邊三角形的性質(zhì),得到AB=BC=AC,∠A=∠ABC=∠ACB=60°.由AD=AE,得到BD=EC.由中位線的性質(zhì),得到NP∥BD,BD=2NP,進(jìn)而有∠NPC=∠ABC=60°,BD=2NP.
同理有EC=2MP,∠MPB=∠ECB=60°,得到MP=NP,∠MPN=180°-∠MPB-∠NPC=60°,即可得到結(jié)論.
(2)連接BD,CE.易證△ABD≌△ACE,得到BD=CE,∠ABD=∠ACE.由PM是△BCE的中位線,得到PM=CE且PM∥BD.同理可證PN=BD且PN∥BD,得到BD=CE,∠MPB=∠ECB,∠NPC=∠DBC,進(jìn)而得到∠MPN=60°,即可得到結(jié)論.
詳解:(1)等邊三角形 .理由如下:
∵△ABC是等邊三角形,∴AB=BC=AC,∠A=∠ABC=∠ACB=60°.
∵AD=AE,∴BD=EC.
∵N、P分別是DC、BC的中點(diǎn),∴NP是△BCD的中位線,∴NP∥BD,BD=2NP,∴∠NPC=∠ABC=60°,BD=2NP.
同理可證:EC=2MP,∠MPB=∠ECB=60°.
∴MP=NP,∠MPN=180°-∠MPB-∠NPC=60°,∴△MPN是等邊三角形.
(2)△PMN的形狀不發(fā)生改變,仍為等邊三角形.理由如下:
連接BD,CE.
由旋轉(zhuǎn)可得∠BAD=∠CAE.
∵△ABC是等邊三角形,∴AB=AC,∠ACB=∠ABC=60°,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE.
∵M是BE的中點(diǎn),P是BC的中點(diǎn),
∴PM是△BCE的中位線,
∴PM=CE且PM∥BD.
同理可證PN=BD且PN∥BD,
∴BD=CE,∠MPB=∠ECB,∠NPC=∠DBC,
∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC-∠ABD)= ∠ACB+∠ABC=120°,
∴∠MPN=60°,
∴△PMN是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為AO的中點(diǎn),CD⊥AB交半圓于點(diǎn)D,以C為圓心,CD為半徑畫弧交AB于E點(diǎn),若AB=4,則圖中陰影部分的面積是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)是邊上一點(diǎn),連接,把矩形沿折疊,使點(diǎn)落在點(diǎn)處,當(dāng)為直角三角形時(shí),的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+b與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A(2,6)和B(m,1)
(1)填空:一次函數(shù)的解析式為 ,反比例函數(shù)的解析式為 ;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=5,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)實(shí)驗(yàn)室:
我們知道,在數(shù)軸上,|a|表示數(shù)a的點(diǎn)到原點(diǎn)的距離,這是絕對(duì)值的幾何意義.進(jìn)一步地,數(shù)軸上的兩個(gè)點(diǎn)A、B,分別表示有理數(shù)a、b,那么A、B兩點(diǎn)之間的距離AB=|a-b|.利用此結(jié)論,回答以下問題:
(1)數(shù)軸上表示1和5的兩點(diǎn)之間的距離是______,數(shù)軸上表示1和-5的兩點(diǎn)之間的距離是______.(1+1分,注意寫出最后結(jié)果)
(2)式子|x+2|可以看做數(shù)軸上表示x和______的兩點(diǎn)之間的距離.
(3)式子|x+2|+|x-3|的最小值是______.
(4)當(dāng)|x+2|+|x-3|取得最小值時(shí),數(shù)x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠有甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要.兩種印刷方式的費(fèi)用y(元)與印刷份數(shù)x(份)之間的關(guān)系如圖所示:
(1)填空:甲種收費(fèi)的函數(shù)表達(dá)式是 ,乙種收費(fèi)的函數(shù)表達(dá)式是 .
(2)請(qǐng)你根據(jù)不同的印刷數(shù)量幫忙確定選擇哪種印刷方式較合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:對(duì)于排好順序的三個(gè)數(shù): 稱為數(shù)列.將這個(gè)數(shù)列如下式進(jìn)行計(jì)算: ,,,所得的三個(gè)新數(shù)中,最大的那個(gè)數(shù)稱為數(shù)列的“關(guān)聯(lián)數(shù)值”.
例如:對(duì)于數(shù)列因?yàn)?/span>所以數(shù)列的“關(guān)聯(lián)數(shù)值”為6.進(jìn)一步發(fā)現(xiàn):當(dāng)改變這三個(gè)數(shù)的順序時(shí),所得的數(shù)列都可以按照上述方法求出“關(guān)聯(lián)數(shù)值”,如:數(shù)列的 “關(guān)聯(lián)數(shù)值”為0;數(shù)列的“關(guān)聯(lián)數(shù)值”為3...而對(duì)于“”這三個(gè)數(shù),按照不同的排列順序得到的不同數(shù)列中,“關(guān)聯(lián)數(shù)值"的最大值為6.
(1)數(shù)列的“關(guān)聯(lián)數(shù)值”為_______;
(2)將“”這三個(gè)數(shù)按照不同的順序排列,可得到若干個(gè)不同的數(shù)列,這些數(shù)列的“關(guān)聯(lián)數(shù)值”的最大值是_______, 取得“關(guān)聯(lián)數(shù)值”的最大值的數(shù)列是______
(3)將“”這三個(gè)數(shù)按照不同的順序排列,可得到若干個(gè)不同的數(shù)列,這些數(shù)列的“關(guān)聯(lián)數(shù)值”的最大值為10,求的值,并寫出取得“關(guān)聯(lián)數(shù)值”最大值的數(shù)列.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2014年開始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改資金(萬元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請(qǐng)你認(rèn)真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個(gè)函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬元.
①預(yù)計(jì)生產(chǎn)成本每件比2016年降低多少萬元?
②若打算在2017年把每件產(chǎn)品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結(jié)果精確到0.01萬元).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com