已知:如圖,在梯形ABCD中,AB∥CD,E、F為AB上兩點,且AE=BF,DE=CF,EF≠CD.
求證:AD=BC.

【答案】分析:首先根據(jù)等腰梯形CDEF得到∠DEF=∠CFE,再根據(jù)等角的補角相等得到∠AED=∠BFC.然后根據(jù)SAS證明△AED≌△BFC,從而證明結(jié)論.
解答:證明:∵DC∥EF,EF≠CD,
∴四邊形CDEF是梯形,
∵DE=CF,
∴梯形CDEF是等腰梯形,
∴∠DEF=∠CFE,
∴∠DEA=∠CFB,
又∵AE=BF,DE=CF,
∴△AED≌△BFC,
∴AD=BC.
點評:掌握等腰梯形的判定和性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,對角線CA平分∠BCD,且梯形的周長為20,求AC的長及梯形面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,點E為AC的中點.求證:DE=
12
BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•閔行區(qū)二模)已知:如圖,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足為點F,且F是DE的中點,聯(lián)結(jié)AE,交邊BC于點G.
(1)求證:四邊形ABGD是平行四邊形;
(2)如果AD=
2
AB
,求證:四邊形DGEC是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的長;
        (2)梯形ABCD的面積.

查看答案和解析>>

同步練習冊答案