分析 (1)根據(jù)等邊三角形的性質(zhì)得到∠B=∠C=60°,AB=BC;等量代換得到∠DAB=∠EDC,根據(jù)相似三角形的判定即可得到結(jié)論;
(2)根據(jù)等邊三角形的想在得到AB=BC=9cm,求得CD=6cm,根據(jù)相似三角形的性質(zhì)得到$\frac{AB}{CD}=\frac{BD}{CE}$,代入數(shù)據(jù)即可得到結(jié)論.
解答 (1)證明:∵△ABC是等邊三角形,
∴∠B=∠C=60°,AB=BC;
∴CD=BC-BD=AB-3;
∴∠BAD+∠ADB=120°
∵∠ADE=60°,
∴∠ADB+∠EDC=120°,
∴∠DAB=∠EDC,
又∵∠B=∠C=60°,
∴△ABD∽△DCE;
(2)∵△ABC是等邊三角形,
∴AB=BC=9cm,∵BD=3cm,
∴CD=6cm,
∵△ABD∽△DCE,
∴$\frac{AB}{CD}=\frac{BD}{CE}$,
即$\frac{9}{6}=\frac{3}{CE}$,
∴CE=2.
點評 此題主要考查了等邊三角形的性質(zhì)和相似三角形的判定和性質(zhì),能夠證得△ABD∽△DCE是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com