(2003•濱州)在平面直角坐標系中(單位長度:1cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2cm/s的速度沿折線AOy運動,同時點Q從點B開始以1cm/s的速度沿折線BOy運動.
(1)在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.
(2)試判斷時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.
(3)請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.
【答案】分析:(1)①當P、Q在y軸運動時,才能夠成△AOP和△BOQ,因此當t≤2時,構(gòu)不成三角形.當t>2時,可構(gòu)成以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形.
兩三角形相似,這兩個三角形中,已知了一組直角,而通過計算不難的這兩個直角三角形的直角邊也對應成比例,因此兩三角形相似.
②由于兩三角形相似,因此兩者一定會同時成為等腰直角三角形,要使兩三角形成為等腰直角三角形,以三角形OAP為例:OA=OP=4,因此t=4.即可當t=4s時,兩三角形同時成為等腰直角三角形.
(2)①可計算出當t=2+4時AP,BQ的長即兩圓的半徑長,然后比較兩圓的半徑和圓心距即AB的距離即可判斷出兩圓的位置關(guān)系.
②同①可根據(jù)兩圓的半徑長即AP、BQ的長和圓心距AB的長來求出不同的圓與圓的位置關(guān)系時,t的取值范圍.
解答:解:(1)①不一定.例如:當t≤2s時,點A、O、P與點B、O、Q都不能構(gòu)成三角形.
②當t>2s時,即當點P、Q在y軸的正半軸上時,△AOP∽△BOQ.
這是因為:,,∠AOP=∠BOQ=90度.
③會成為等腰直角三角形.
這是因為:當OA=OQ=4時,OA+OQ=8,即當t=4s時,△AOP為等腰直角三角形.
同理可得,當t=4s時,△BOQ為等腰直角三角形.
(2)當t=(2+4)s時,OP=2(2+4)-4=8cm,
∴AP==12(cm),
同理可得BQ=6cm,
∴AB=AP-BQ,
∴此時⊙A與⊙B內(nèi)切.
②有.當外離時,0<t<2;
當外切時,t=2;
當相交時,2<t<2+4;
當內(nèi)含時,t>2.
(3)當t=3s時,OP=2×3-4=2(cm),此時點P的坐標為(0,2),
設經(jīng)過點A、B、P的拋物線的解析式為y=ax2+bx+c,

解得
故所求解析式為y=-x2-x+2.
點評:本題考查了相似三角形的判定和性質(zhì)、等腰直角三角形的判定、圓與圓的位置關(guān)系、二次函數(shù)解析式的確定等知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•濱州)在平面直角坐標系中(單位長度:1cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2cm/s的速度沿折線AOy運動,同時點Q從點B開始以1cm/s的速度沿折線BOy運動.
(1)在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.
(2)試判斷時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.
(3)請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市中考數(shù)學模擬試卷(9)(解析版) 題型:解答題

(2003•濱州)在平面直角坐標系中(單位長度:1cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2cm/s的速度沿折線AOy運動,同時點Q從點B開始以1cm/s的速度沿折線BOy運動.
(1)在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.
(2)試判斷時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.
(3)請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年山東省濱州市中考數(shù)學試卷(解析版) 題型:解答題

(2003•濱州)在平面直角坐標系中(單位長度:1cm),A、B兩點的坐標分別為(-4,0),(2,0),點P從點A開始以2cm/s的速度沿折線AOy運動,同時點Q從點B開始以1cm/s的速度沿折線BOy運動.
(1)在運動開始后的每一時刻一定存在以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形嗎?如果存在,那么以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形相似嗎?以點A、O、P為頂點的三角形和以點B、O、Q為頂點的三角形會同時成為等腰直角三角形嗎?請分別說明理由.
(2)試判斷時,以點A為圓心,AP為半徑的圓與以點B為圓心、BQ半徑的圓的位置關(guān)系;除此之外⊙A與⊙B還有其他位置關(guān)系嗎?如果有,請求出t的取值范圍.
(3)請你選定某一時刻,求出經(jīng)過三點A、B、P的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《數(shù)據(jù)收集與處理》(01)(解析版) 題型:選擇題

(2003•濱州)在頻率分布直方圖中,每個小長方形的面積表示( )
A.組距
B.頻數(shù)
C.頻率
D.

查看答案和解析>>

同步練習冊答案