【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點A順時針旋轉(zhuǎn)αα180°)后與⊙O相切,則α的值為_____

【答案】60°120 °

【解析】

線段AB繞點A順時針旋轉(zhuǎn)αα180°)后與⊙O相切,切點為C′C″,連接OC′、OC″,根據(jù)切線的性質(zhì)得OC′AB′,OC″AB″,利用直角三角形30度的判定或三角函數(shù)求出∠OAC′=30°,從而得到∠BAB′=60°,同理可得∠OAC″=30°,則∠BAB″=120°

線段AB繞點A順時針旋轉(zhuǎn)αα180°)后與⊙O相切,切點為C′C″,連接OC′、OC″,

OC′AB′,OC″AB″,

RtOAC′中,∵OC′=1,OA=2

∴∠OAC′=30°,

∴∠BAB′=60°,

同理可得∠OAC″=30°,

∴∠BAB″=120°,

綜上所述,α的值為60°120°

故答案為60°120°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某幼兒園為了加強安全管理,決定將園內(nèi)的滑滑板的傾斜角由45°降為30°,已知原滑滑板AB的長為5米,點D、B、C在同一水平地面上.若滑滑板的正前方能有3米長的空地就能保證安全,原滑滑板的前方有6米長的空地,像這樣改造是否可行?請說明理由.(參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)(x<0,常數(shù)k<0)的圖象經(jīng)過點A(-1,2),B(m,n)(m<-1),過點By軸的垂線,垂足為C,若△ABC面積為2,求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)閱讀理解:

如圖,如果四邊形ABCD滿足AB=AD,CB=CD∠B=∠D=90°,那么我們把這樣的四邊形叫做完美箏形

將一張如圖所示的完美箏形紙片ABCD先折疊成如圖所示形狀,再展開得到圖,其中CECF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應(yīng)點,點D′為點D的對應(yīng)點,連接EB′,FD′相交于點O

簡單應(yīng)用:

1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為完美箏形的是 ;

2)當(dāng)圖中的∠BCD=120°時,∠AEB′= °;

3)當(dāng)圖中的四邊形AECF為菱形時,對應(yīng)圖中的完美箏形 個(包含四邊形ABCD).

拓展提升:

4)當(dāng)圖中的∠BCD=90°時,連接AB′,請?zhí)角?/span>∠AB′E的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):頂點在圓上,兩邊與圓相交同弧所對的圓周角相等,小明在課后繼續(xù)對圓外角和圓內(nèi)角進行了探究.

下面是他的探究過程,請補充完整:

定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對的一個圓外角.

(1)請在圖2中畫出所對的一個圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(大于等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個猜想中任選一個進行證明;

問題解決

經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3,FH是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,點P和圖形W的中間點的定義如下:Q是圖形W上一點,若M為線段PQ的中點,則稱M為點P和圖形W的中間點.C(-2,3),D1,3),E10),F(-2,0

(1)點A2,0),

①點A和原點的中間點的坐標為 ;

②求點A和線段CD的中間點的橫坐標m的取值范圍;

2)點B為直線y=2x上一點,在四邊形CDEF的邊上存在點B和四邊形CDEF的中間點,直接寫出點B的橫坐標n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是邊長為4的等邊三角形,邊AB在射線OM上,且OA6,點D是射線OM上的動點,當(dāng)點D不與點A重合時,將ACD繞點C逆時針方向旋轉(zhuǎn)60°得到BCE,連接DE

1)如圖1,求證:CDE是等邊三角形.

2)設(shè)ODt

①當(dāng)6t10時,BDE的周長是否存在最小值?若存在,求出BDE周長的最小值;若不存在,請說明理由.

②求t為何值時,DEB是直角三角形(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A0,3),B30),C3,4)三點,點Px,﹣0.5x),當(dāng)ABP的面積等于ABC的面積時,則P點的坐標是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩正方形彼此相鄰,且大正方形ABCD的頂點AD在半圓O上,頂點B,C在半圓O的直徑上;小正方形BEFG的頂點F在半圓O上,E點在半圓O的直徑上,點G在大正方形的邊AB上.若小正方形的邊長為4 cm,求該半圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案