若拋物線y=ax2+bx+c的頂點是A(2,1),且經(jīng)過點B(1,0),則拋物線的函數(shù)關(guān)系式為________.

答案:
解析:

  答案:y=-x2+4x-3.

  分析:設(shè)拋物線的解析式為y=a(x-2)2+1,將點B(1,0)代入解析式即可求出a的值,從而得到二次函數(shù)解析式.

  解答:解:設(shè)拋物線的解析式為y=a(x-2)2+1,

  將B(1,0)代入y=a(x-2)2+1得,

  a=-1,

  函數(shù)解析式為y=-(x-2)2+1,

  展開得y=-x2+4x-3.

  點評:本題考查了待定系數(shù)法求函數(shù)解析式,知道二次函數(shù)的頂點式是解題的關(guān)鍵,要注意,最后結(jié)果要化為一般式.


提示:

待定系數(shù)法求二次函數(shù)解析式.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB為直徑的OM交OC于點D、E,連結(jié)AD、BD.現(xiàn)以O(shè)為坐標(biāo)原點,OA、OC所在直線為x軸、y軸建立如圖所示直角坐標(biāo)系,若拋物線yax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.

【小題1】(1)寫出頂點B的坐標(biāo) ▲ (用a的代數(shù)式表示);
【小題2】(2)求拋物線的解析式:
【小題3】(3)在x軸下方的拋物線上是否存在這樣的點P:過點P作PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標(biāo):若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市劉潭實驗學(xué)校九年級上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:填空題

若拋物線y=ax2+bx+c經(jīng)過點(0,―3),(2,―3)且與x軸的一個交點坐標(biāo)是(―2,0),則與x軸的另一個交點坐標(biāo)是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省蘇州市高新區(qū)九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB為直徑的OM交OC于點D、E,連結(jié)AD、BD.現(xiàn)以O(shè)為坐標(biāo)原點,OA、OC所在直線為x軸、y軸建立如圖所示直角坐標(biāo)系,若拋物線yax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.

【小題1】(1)寫出頂點B的坐標(biāo) ▲ (用a的代數(shù)式表示);
【小題2】(2)求拋物線的解析式:
【小題3】(3)在x軸下方的拋物線上是否存在這樣的點P:過點P作PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標(biāo):若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

若拋物線y=ax2+bx+c經(jīng)過點(0,―3),(2,―3)且與x軸的一個交點坐標(biāo)是(―2,0),則與x軸的另一個交點坐標(biāo)是    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇州市高新區(qū)九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB為直徑的OM交OC于點D、E,連結(jié)AD、BD.現(xiàn)以O(shè)為坐標(biāo)原點,OA、OC所在直線為x軸、y軸建立如圖所示直角坐標(biāo)系,若拋物線yax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.

1.(1)寫出頂點B的坐標(biāo)  ▲  (用a的代數(shù)式表示);

2.(2)求拋物線的解析式:

3.(3)在x軸下方的拋物線上是否存在這樣的點P:過點P作PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標(biāo):若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案