【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做等對(duì)角四邊形.請(qǐng)解決下列問(wèn)題:
(1)已知:如圖1,四邊形ABCD是等對(duì)角四邊形,∠A≠∠C,∠A=70°,∠B=75°,則∠C= °,∠D= °
(2)在探究等對(duì)角四邊形性質(zhì)時(shí):
小紅畫(huà)了一個(gè)如圖2所示的等對(duì)角四邊形ABCD,其中,∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立,請(qǐng)你證明該結(jié)論;
(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在網(wǎng)點(diǎn)上.按要求在圖①、圖②中以AB和BC為邊各畫(huà)一個(gè)等對(duì)角四邊形ABCD.
要求:四邊形ABCD的頂點(diǎn)D在格點(diǎn)上,所畫(huà)的兩個(gè)四邊形不全等.
(4)已知:在等對(duì)角四邊形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求對(duì)角線AC的長(zhǎng).
【答案】(1)140°,75°;(2)證明見(jiàn)解析;(3)見(jiàn)解析;(4)2或2.
【解析】
試題(1)根據(jù)四邊形ABCD是“等對(duì)角四邊形”得出∠D=∠B=75°,根據(jù)多邊形內(nèi)角和定理求出∠C即可;
(2)連接BD,根據(jù)等邊對(duì)等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根據(jù)等腰三角形的判定得出即可;
(3)根據(jù)等對(duì)角四邊形的定義畫(huà)出圖形即可求解;
(4)分兩種情況:①當(dāng)∠ADC=∠ABC=90°時(shí),延長(zhǎng)AD,BC相交于點(diǎn)E,先用含30°角的直角三角形的性質(zhì)求出AE,得出DE,再用三角函數(shù)求出CD,由勾股定理求出AC;
②當(dāng)∠BCD=∠DAB=60°時(shí),過(guò)點(diǎn)D作DM⊥AB于點(diǎn)M,DN⊥BC于點(diǎn)N,則∠AMD=90°,四邊形BNDM是矩形,先求出AM、DM,再由矩形的性質(zhì)得出DN=BM=3,BN=DM=2,求出CN、BC,根據(jù)勾股定理求出AC即可.
試題解析:
(1)解:∵四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=70°,∠B=75°,
∴∠D=∠B=75°,
∴∠C=360°﹣75°﹣75°﹣70°=140°;
(2)證明:如圖2,連接BD,
∵AB=AD,
∴∠ABD=∠ADB,
∵∠ABC=∠ADC,
∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,
∴∠CBD=∠CDB,
∴CB=CD;
(3)如圖所示:
(4)解:分兩種情況:
①當(dāng)∠ADC=∠ABC=90°時(shí),延長(zhǎng)AD,BC相交于點(diǎn)E,如圖3所示:
∵∠ABC=90°,∠DAB=60°,AB=5,
∴∠E=30°,
∴AE=2AB=10,
∴DE=AE﹣AD=10﹣4═6,
∵∠EDC=90°,∠E=30°,
∴CD=2,
∴AC=;
②當(dāng)∠BCD=∠DAB=60°時(shí),
過(guò)點(diǎn)D作DM⊥AB于點(diǎn)M,DN⊥BC于點(diǎn)N,如圖4所示:
則∠AMD=90°,四邊形BNDM是矩形,
∵∠DAB=60°,
∴∠ADM=30°,
∴AM=AD=2,
∴DM=2,
∴BM=AB﹣AM=5﹣2=3,
∵四邊形BNDM是矩形,
∴DN=BM=3,BN=DM=2,
∵∠BCD=60°,
∴CN=,
∴BC=CN+BN=3,
∴AC=.
綜上所述:AC的長(zhǎng)為或.
故答案為:140,75.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ACB中,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是CD的中點(diǎn),過(guò)點(diǎn)C作CF∥AB叫AE的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE;
(2)若∠DCF=120°,DE=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在中,,是邊上的一個(gè)動(dòng)點(diǎn),將沿所在直線折疊,使點(diǎn)落在點(diǎn)處.
(1)如圖①,若點(diǎn)是的中點(diǎn),連接.求證:四邊形是平行四邊形;
(2)如圖②,若,求的值.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市在各校推廣大閱讀活動(dòng),初二(1)班為了解2月份全班學(xué)生課外閱讀的情況,調(diào)查了全班學(xué)生2月份讀書(shū)的冊(cè)數(shù),并根據(jù)調(diào)查結(jié)果繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:
根據(jù)以上信息解決下列問(wèn)題:
(1)參加本次問(wèn)卷調(diào)查的學(xué)生共有 人,其中2月份讀書(shū)2冊(cè)的學(xué)生有 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中讀書(shū)3冊(cè)所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)在讀書(shū)4冊(cè)的學(xué)生中恰好有2名男生和2名女生,現(xiàn)要在這4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校的閱讀分享沙龍,請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表)求所選取的這2名學(xué)生恰好性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)期間,某品牌粽子經(jīng)銷(xiāo)商銷(xiāo)售甲、乙兩種不同味道的粽子,已知一個(gè)甲種粽子和一個(gè)乙種粽子的進(jìn)價(jià)之和為10元,每個(gè)甲種粽子的利潤(rùn)是4元,每個(gè)乙種粽子的售價(jià)比其進(jìn)價(jià)的2倍少1元,小王同學(xué)買(mǎi)4個(gè)甲種粽子和3個(gè)乙種粽子一共用了61元.
(1)甲、乙兩種粽子的進(jìn)價(jià)分別是多少元?
(2)在(1)的前提下,經(jīng)銷(xiāo)商統(tǒng)計(jì)發(fā)現(xiàn):平均每天可售出甲種粽子200個(gè)和乙種粽子150個(gè).如果將兩種粽子的售價(jià)各提高1元,則每天將少售出50個(gè)甲種粽子和40個(gè)乙種粽子.為使每天獲取的利潤(rùn)更多,經(jīng)銷(xiāo)商決定把兩種粽子的價(jià)格都提高x元.在不考慮其他因素的條件下,當(dāng)x為多少元時(shí),才能使該經(jīng)銷(xiāo)商每天銷(xiāo)售甲、乙兩種粽子獲取的利潤(rùn)為1190元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、F、C、D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.
(1)求證:四邊形BCEF是平行四邊形,
(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖直角坐標(biāo)系內(nèi),四邊形AOBC是邊長(zhǎng)為2的菱形,E為邊OB的中點(diǎn),連結(jié)AE與對(duì)角線OC交于點(diǎn)D,且∠BCO=∠EAO,則點(diǎn)D坐標(biāo)為( )
A. (,) B. (1,) C. (,) D. (1,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com