如圖1,點O為直線AB上一點,過點O作射線OC,將一直角三角形的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直
線ON是否平分∠AOC?請說明理由;
(2) 若∠BOC=120°.
①將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為 (直接寫出結(jié)果);
②將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚?/p>
∠AOM與∠NOC之間的數(shù)量關系,并說明理由.
(1)已知∠AOC=60°,
∴∠BOC=120°,
又OM平分∠BOC,
∠COM=∠BOC=60°,
∴∠CON=∠COM+90°=150°;
(2)延長NO,
∵∠BOC=120°
∴∠AOC=60°,
當直線ON恰好平分銳角∠AOC,
∴∠AOD=∠COD=30°,
即順時針旋轉(zhuǎn)300°時NO延長線平分∠AOC,
由題意得,10t=300°
∴t=30,
當NO平分∠AOC,
∴∠NOR=30°,
即順時針旋轉(zhuǎn)120°時NO平分∠AOC,
∴10t=120°,
∴t=12,
∴t=12或30;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°,
所以∠AOM與∠NOC之間的數(shù)量關系為:∠AOM-∠NOC=30°.
【解析】(1)由角的平分線的定義和等角的余角相等求解;
(2)由∠BOC=120°可得∠AOC=60°,則∠AON=30°或∠NOR=30°,即順時針旋轉(zhuǎn)300°或120°時ON平分∠AOC,據(jù)此求解;
(3)因為∠MON=90°,∠AOC=60°,所以∠AOM=90°-∠AON、∠NOC=60°-∠AON,然后作差即可.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
4 |
5 |
k |
x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com